Skip to main content

Conditional Stability in Determination of Densities of Heat Sources in a Bounded Domain

  • Conference paper
Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 118))

Abstract

We consider the heat equation in a bounded domain Ω ⊂ ℝr :

$$ \frac{{\partial u}}{{\partial t}}(x,t) = \Delta u(x,t) + \sigma (t)f(x) (x \in \Omega ,0 < t < T)$$
$$ u(x,0) = 0 (x \in \Omega ), \frac{{\partial u}}{{\partial n}}(x,t) = 0 (x \in \partial \Omega ,0 < t < T)$$

Assuming that σ is a known function with σ (0) ≠ 0, we prove :(1) ƒ(x) (x ∊ Ω) can be uniquely determined from the boundary data u(x, t) (x ∊ ∂Ω, 0 < t < T). (2) If ƒ is restricted to a compact set in a Sobolev space, then we get an estimate:

$$ {{\left\| f \right\|}_{{{{L}^{2}}}}}_{{(\Omega )}} = 0\left( {{{{\left( {\log \frac{1}{\eta }} \right)}}^{{ - \beta }}}} \right) $$

as

$$ \eta \equiv {{\left\| {u(,)} \right\|}_{{{{H}^{1}}}}}_{{(0 T {{L}^{2}}(\partial \Omega ))}} \downarrow 0 $$

Here the exponent ß is given by the order of the Sobolev space which is assumed to contain the set of ƒ’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Adams, Sobolev Spaces, Academic Press, NewYork, 1975.

    MATH  Google Scholar 

  2. S. Agmon, Lectures on EllipticBoundary Value Problems, Van Nostrand, Princeton, N.J., 1965.

    Google Scholar 

  3. J. R. Cannon, Determination ofan unknown heat source from over specified boundary data, SIAM J. Numer.Anal. 5 (1968), 275–286.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. R. Cannon and S. P. Esteva, Aninverse problem for the heat equation, Inverse Problems 2 (1986) 395–403.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Courant and D. Hilbert, Methodsof Mathematical Physics, Volume I, Interscience, New York, 1953.

    Google Scholar 

  6. H. O. Fattorini, Boundarycontrol of temperature distributions in a parallelepipedon, SIAM J. Control13 (1975) 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Fujiwara, Concretecharacterization of the domains of fractional powers of some elliptic differentialoperators of the second order, Proc. Japan Acad. 43 (1967), 82–86.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Itô, Diffusion Equations, (English translation), AmericanMathematical Society, Providence, Rhode Island, 1992.

    MATH  Google Scholar 

  9. M. M. Lavrent’ev, K. G. Reznitskaja and V. G. Yakhno, One-dimensional Inverse Problems of Mathematical Physics, (Englishtranslation), American Mathematical Society, Providence, Rhode Island, 1986.

    Google Scholar 

  10. M. M. Lavrent’ev, V. G. Romanov and S. P. Shishat-skí, Ill-posed Problems of Mathematical Physicsand Analysis, (English translation), American Mathematical Society,Providence, Rhode Island, 1986.

    Google Scholar 

  11. M. M. Lavrent’ev, V. G. Romanov and V. G. Vasil’ev, Multidimensional Inverse Problems for DifferentialEquations, (Lecture Notes in Mathematics, No. 167), Springer-Verlag, Berlin,1970.

    Google Scholar 

  12. S. Mizohata, The Theory ofPartial Differential Equations, Cambridge University Press, London, 1973.

    Google Scholar 

  13. A. Pazy, Semigroups of LinearOperators and Applications to Partial Differential EquationsSpringer-Verlag, Berlin,1983.

    Book  Google Scholar 

  14. V. G. Romanov, Inverse Problemsof Mathematical Physics, (English translation), VNU Science Press, Utrecht,1987.

    Google Scholar 

  15. D. L. Russell, A unifiedboundary controllability theory for hyperbolic and parabolic partial differentialequations, Studies in Applied Mathematics 52 (1973), 189–211.

    MATH  Google Scholar 

  16. E. C. Titchmarsh, Introductionto the Theory of Fourier Integrals, Oxford University Press, London, 1937.

    Google Scholar 

  17. F. G. Tricomi, Integral Equations, Dover, New York,1985.

    Google Scholar 

  18. M. Yamamoto, Conditionalstability in determination of force terms of heat equations in a rectangle, Mathematicaland Computer Modelling 18 (1993), 79–88.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Basel AG

About this paper

Cite this paper

Yamamoto, M. (1994). Conditional Stability in Determination of Densities of Heat Sources in a Bounded Domain. In: Desch, W., Kappel, F., Kunisch, K. (eds) Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena. ISNM International Series of Numerical Mathematics, vol 118. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8530-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8530-0_20

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9666-5

  • Online ISBN: 978-3-0348-8530-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics