Skip to main content

Vaccines using Gene-Modified Tumor Cells

  • Chapter
Gene Therapy
  • 234 Accesses

Abstract

To date, many cytokines and costimulatory molecules have been transfected in a number of different rodent tumors and in several cases, these gene modified tumor cells, when used as vaccines, induced tumor immunity leading to rejection of a challenge with the parental tumor (Blankenstein et al., 1996). Despite the limited success obtained previously in clinical trials involving tumor cell vaccines (Oettgen and Old, 1991), the recent molecular characterization of tumor associated antigens, the availability of many immunostimulatory molecules (i.e. cytokines) and improved methods for the transfer of genes in mammalian cells have revived the long-standing interest in immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allione, A., Consalvo, M., Nanni, P., Lollini, P. L., Cavallo, E, Giovarelli, M., Forni, M., Gulino, A., Colombo, M. P., Dellabona, P., Hock, H., Blankenstein, Th., Rosenthal, E M., Gansbacher, B., Bosco, M. C, Musso, T., Gusella, L., Forni, G. (1994) Immunizing and curative potential of replicating and nonreplicating murine mammary adenocarcinoma cells engineered with interleukin (IL)-2, IL-4, IL-6, IL-7, IL-10, tumor necrosis factor a, granulocyte-macrophage colony-stimulating factor, and y-Interferon gene or admixed with conventional adjuvants. Cancer Res. 54: 6022–6026.

    PubMed  CAS  Google Scholar 

  2. Barth, R. J., Mulé, J. J., Spiess, P. J., Rosenberg, S. A. (1991) Interferon y and tumor necrosis factor have a role in tumor regression mediated by murine CD8+ tumor-infiltrating lymphocytes. J. Exp. Med. 173: 647–658.

    Article  PubMed  CAS  Google Scholar 

  3. Baskar, S., Ostrand-Rosenberg, S., Nabavi, N., Nadler, L. M., Freeman, G. J., Glimcher, L. H. (1993) Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated MHC class II molecules. Proc. Natl. Acad. Sci. USA 90: 5687–5690.

    Article  PubMed  CAS  Google Scholar 

  4. Blankenstein Th, Rowley DA, Schreiber, H. (1991) Cytokines and cancer: experimental systems. Curr. Opin. Immunol. 3: 694–698.

    Article  PubMed  CAS  Google Scholar 

  5. Blankenstein, T. (1996) Genetic approaches to cancer immunotherapy. Rev. Physiol. Biochem. Pharmacol. col (in press).

    Google Scholar 

  6. Boon, T., Cerottini, J. C., Van den Eynde, B., van der Bruggen, P., Van Pel, A. (1994) Tumor antigens recognized by T lymphocytes. Annu. Rev. Immunol. 12: 337–365.

    Article  PubMed  CAS  Google Scholar 

  7. Cavallo, E, Giovarelli, M., Gulino, A. et al. (1992) Role of neutrophils and CD4’ T lymphocytes in the primary and memory response to nonimmunogenic murine mammary adenocarcinoma made immunogenic by IL-2 gene transfection. J. Immunol. 149: 3627–3635.

    PubMed  CAS  Google Scholar 

  8. Cavallo, F., Di Pierro, F., Giovarelli, M., Gulino, A., Vacca, A., Stoppacciaro, A., Forni, M., Modesti, A., Forni, G. (1993) Protective and curative potential of vaccination with interleukin-2-gene-transfected cells from a spontaneous mouse mammary adenocarcinoma. Cancer Res. 53: 5067–5070.

    PubMed  CAS  Google Scholar 

  9. Cavallo, F., Martin-Fontecha, A., Bellone, M., Heltai, S., Gatti, E., Tornaghi, P., Freschi, M., Forni, G., Dellabona, P., Casorati, G. (1995) Co-expression of B7–1 and ICAM-1 on tumors is required for rejection and the establishment of a memory response. Eur. J. Immunol. 25: 1154–1162.

    Article  PubMed  CAS  Google Scholar 

  10. Cayeux, S., Beck, C., Aicher, A., Dörken, B., Blankenstein, Th. (1995) Tumor cells cotransfected with interleukin 7 and B7.1 genes induce CD25 and CD28 on tumor infiltrating lymphocytes and are strong vaccines. Eur. J. Immunol. 25: 2325–2331.

    Article  PubMed  CAS  Google Scholar 

  11. Cayeux, S., Beck, C., Dörken, B., Blankenstein, T. (1996) Coexpression of interleukin 4 and B7.1 in murine tumor cells leads to improved tumor rejection and vaccine effect compared to single gene transfectant and a classical adjuvant. Hum. Gene Ther. 7: 525–529.

    Article  PubMed  CAS  Google Scholar 

  12. Chen, L., Ashe, S., Brady, W. A., Hellström, I., Hellström, K. E., Ledbetter, J. A., McGowan, P., Linsley, P. S. (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71: 1093–1102.

    Article  PubMed  CAS  Google Scholar 

  13. Chen, L., Linsley, R S., Hellström, K. E. (1993) Costimulation of T cells for tumor immunity. Immunol. Today 14: 482–486.

    Article  Google Scholar 

  14. Chen, L., McGowan, R, Ashe, S., Johnston, Y., Li, Y., Hellström, I., Hellström, K. E. (1994) Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J. Exp. Med. 179: 523–532.

    Article  PubMed  CAS  Google Scholar 

  15. Colombo, M. P., Modesti, A., Parmiani, G. et al. (1992) Local cytokine availability elicits tumor rejection and systemic immunity through granulocyte-T-lymphocyte cross-talk. Cancer Res. 52: 4853–4857.

    PubMed  CAS  Google Scholar 

  16. Connor, J., Bannerji, R., Saito, S., Heston, W., Fair, W., Gilboa, E. (1993) Regression of bladder tumors in mice treated with interleukin 2 gene-modified tumor cells. J. Exp. Med. 177: 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  17. Costello, R., Brailly, H., Mallet, F. et al. (1993) Interleukin-7 is a potent co-stimulus of the adhesion pathway involving CD2 and CD28 molecules. Immunology 80: 451–457.

    PubMed  CAS  Google Scholar 

  18. Dorsch, M., Hock, H., Kunzendorf, U., Diamantstein, T., Blankenstein, Th. (1993) Macrophage colony-stimulating factor gene transfer into tumor cells induces macrophage infiltration but not tumor suppression. Eur. J. Immunol. 23: 186–190.

    Article  PubMed  CAS  Google Scholar 

  19. Dranoff, G., Jaffee, E., Lazenby, A. et al. (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc. Natl. Acad. Sci. USA 90: 3539–3543.

    Article  PubMed  CAS  Google Scholar 

  20. Fearon, E. R., Pardoll, D. M., Itaya, T. et al. (1990) Interleukin 2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60: 397–403.

    Article  PubMed  CAS  Google Scholar 

  21. Gansbacher, B., Zier, K., Daniels, B., Cronin, K., Bannerjy, R., Gilboa, E. (1990) Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J. Exp. Med. 172: 1217–1224.

    Article  PubMed  CAS  Google Scholar 

  22. Golumbek, P. T., Lazenby, A. J., Levitsky, H. I. et al. (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin 4. Science 254: 713–716.

    Article  PubMed  CAS  Google Scholar 

  23. Hock, H., Dorsch, M., Diamantstein, T., Blankenstein, T. (1991) Interleukin 7 induces CD4’ T cell-dependent tumor rejection. J. Exp. Med. 174: 1291–1298.

    Article  PubMed  CAS  Google Scholar 

  24. Hock, H., Dorsch, M., Kunzendorf, U., Qin, Z., Diamantstein, T., Blankenstein, Th. (1993a) Mechanisms of rejection induced by tumor cell targeted gene transfer of interleukin-2, interleukin-4, interleukin-7, tumor necrosis factor or interferon-gamma. Proc. Natl. Acad. Sci. USA 90: 2774–2778.

    Article  PubMed  CAS  Google Scholar 

  25. Hock, H., Dorsch, M., Kunzendorf, U. et al. (1993b) Vaccinations with tumor cells genetically engineered to produce different cytokines: effectivity not superior to a classical adjuvant. Cancer Res. 53: 714–716.

    PubMed  CAS  Google Scholar 

  26. June, C. H., Bluestone, J. A., Nadler, L. M., Thompson, C. B. (1994) The B7 and CD28 receptor families. Immunol. Today 15: 321–331.

    Article  PubMed  CAS  Google Scholar 

  27. Karp, S. E., Farber, A., Salo, J. C. et al. (1993) Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL2 but not tumor necrosis factor. J. Immunol. 150: 896–908.

    PubMed  CAS  Google Scholar 

  28. Krüger-Krasagakes, S., Li, W., Richter, G., Diamantstein, T., Blankenstein, Th. (1993) Eosinophils infiltrating interleukin 5 gene transfected tumors do not suppress tumor growth. Eur. J. Immunol. 23: 992–995.

    Article  PubMed  Google Scholar 

  29. Levitsky, H. I., Lazenby, A., Hayashi, R. J., Pardoll, D. M. (1994) In vivo priming of two distinct antitumor effector populations: The role of MHC class I expression. J. Exp. Med. 179: 1215–1224.

    CAS  Google Scholar 

  30. Linsley, P. S., Ledbetter, J. A. (1993) The role of the CD28 receptor during T cell response to antigen. Annu. Rev. Immunol. 11: 191–212.

    Article  PubMed  CAS  Google Scholar 

  31. Lotze, M. T., Rosenberg, S. A. (1991) Interleukin-2: Clinical applications. In: V. T. DeVita, S. Helman, S. A. Rosenberg (eds), Biologic Therapy of Cancer, Principles and Pratice. J.B. Lippincott Press, New York, pp. 159.

    Google Scholar 

  32. Oettgen, H. F., Old, L. J. (1991) The history of cancer immunotherapy. In: V. T. DeVita, S. Helman, S. A. Rosenberg (eds), Biologic Therapy of Cancer, Principles and Pratice. J.B. Lippincott Press, New York, pp. 87–119.

    Google Scholar 

  33. Pardoll, D. (1993) Cancer vaccines. Immunol. Today 6: 310–316.

    Article  Google Scholar 

  34. Penick, E, Giovarelli, M., Colombo, M. P., Ferrari, G., Musiani, P., Modesti, A., Cavallo, F., Di Pierro, E, Novelli, F., Forni, G. (1994) An efficient Th2-type memory follows CD8` lymphocyte-driven and eosinophil-mediated rejection of a spontaneous mouse mammary adenocarcinoma engineered to release IL-4. J. Immunol. 153: 5659–5673.

    Google Scholar 

  35. Porgador, A., Tzehoval, E., Katy, V. E. et al. (1992) Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res. 52: 3679–3686.

    PubMed  CAS  Google Scholar 

  36. Porgador, A., Bannerji, R., Watanabe, Y., Feldman, M., Gilboa, E., Eisenbach, L. (1993a) Anti-metastatic vaccination of tumor-bearing mice with two types of ?IFN gene inserted tumor cells. J. Immunol. 150: 1458–1470.

    PubMed  CAS  Google Scholar 

  37. Porgador, A., Bannerji, R., Tzehoval, E., Gilboa, E., Feldman, M., Eisenbach, L. (1993b) Anti-metastatic vaccination of tumor-bearing mice with IL-2 gene inserted tumor cells. Int. J. Cancer 53: 471–477.

    Article  PubMed  CAS  Google Scholar 

  38. Qin, Z., Krüger-Krasagakes, S., Kunzendorf, U., Hock, H., Diamantstein, T., Blankenstein Th (1993) Expression of tumor necrosis factor by different tumor cell lines results either in tumor suppression or augmented metastasis. J. Exp. Med. 178: 355–360.

    Article  PubMed  CAS  Google Scholar 

  39. Qin, Z., Noffz, G., Mohaupt, M. and Blankenstein, Th. (1997) Interleukin 10 prevents dendritic cell infiltration and vaccination with granulocyte-macrophage colony-stimulating factor gene modified tumor cells. J. Immunol. 159: 770–776.

    PubMed  CAS  Google Scholar 

  40. Ramarathinam, L., Castle, M., Wu, Y., Liu, Y. (1994) T cell costimulation by B7/BB1 induces CD8 T cell-dependent tumor rejection: An important role of B7/BB1 in the induction, recruitment, and effector function of antitumor T cells. J. Exp. Med. 179: 1205–1214.

    Article  PubMed  CAS  Google Scholar 

  41. Schreiber, H. (1993) Tumor immunology. In: W. E. Paul (ed.), Fundamental Immunology. Raven Press, New York, pp. 1143–1178.

    Google Scholar 

  42. Steinman, R. M. (1991) The dendritic cell system and its role in immunogenicity. Annu. Rev. Immunol. 9: 271–296.

    Article  PubMed  CAS  Google Scholar 

  43. Townsend, S. E., Allison, J. P. (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259: 368–370.

    Article  PubMed  CAS  Google Scholar 

  44. Townsend, S. E., Su, E W., Atherton, J. M., and Allison, J. P. (1994) Specificity and Longevity of Antitumor Immune Responses Induced by B7-transfected Tumors. Cancer Res. 54: 6477–6483.

    PubMed  CAS  Google Scholar 

  45. Wu, L. C., Huang, A. Y. C., Jaffee, E. M, Levitzky, H. I. and Pardoll, D. M. (1995) A reassessment of the role of B7–1 expression in tumor rejection. J. Exp. Med. 182: 1415–1421.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Cayeux, S., Qin, Z., Dörken, B., Blankenstein, T. (1999). Vaccines using Gene-Modified Tumor Cells. In: Blankenstein, T. (eds) Gene Therapy. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7011-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7011-5_18

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7013-9

  • Online ISBN: 978-3-0348-7011-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics