Skip to main content

Hibernation as a Model for Studies on Thermogenesis and its Control

  • Conference paper
Effectors of Thermogenesis

Part of the book series: Experientia Supplementum ((EXS,volume 32))

Abstract

Mammalian hibernation is characterized by the alternation of prolonged periods of hypothermia and spontaneous arousals with a temporary return to euthermia. Of special interest to the physiology of effectors of thermogenesis are the following points:

  1. a)

    In the second part of the arousal process, the metabolic rate reaches 6 to 8 times BMR, with a body temperature about 10 °C lower. Enzymatic adaptations provide for the maintenance of normal reaction rates and regulatory potentials at low temperatures, but how very high thermogenetic rates can be achieved still remains largely unexplained.

  2. b)

    Entrance into hibernation involves a resetting of the hypothalamic thermostat to a lower level, but this is probably not the only intervening regulation. Evidence is presented in favor of a control of thermogenesis at the effector level, in terms both of baseline levels and of loop gains. One likely control factor is acid-base state, which can be changed rapidly and reversibly by ventilation and is characterized by a strong acidosis in hibernation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ambid, L.: Modifications métaboliques en relation avec l’hibernation et les réveils périodiques du Lérot (Eliomys quercinus L.). Thèse Doct. Sci., Toulouse, 1971.

    Google Scholar 

  2. Behrisch, H.W.: Temperature and the regulation of enzyme activity in the hibernator. Isoenzymes of liver pyruvate kinase from the hibernating and non-hibernating Arctic ground squirrel. Canad. J. Biochem. 52 (1974), 894–902.

    Google Scholar 

  3. Borgmann, A.I. and Moon, T.W.: Enzymes of the normothermic and hibernating bat, Myotis lucifugus: temperature as a modulator of pyruvate kinase. J. comp. Physiol. 107 (1976), 185–199.

    Google Scholar 

  4. Cannon, B. and Polnaszek, C.F.: The role of mitochondrial membrane lipids in cold adaptation and hibernation. p. 93–116, In: Regulation of Depressed Metabolism and Thermogenesis, L. Janksy and X.J. Musacchia ed. Springfield, Thomas, 1976.

    Google Scholar 

  5. Chinet, A., Friedli, C., Seydoux J. and Girardier, L.: Does cytoplasmic alkalinisation trigger mitochondrial energy dissipation in the brown adipocyte? This symposium.

    Google Scholar 

  6. Christiansen, E.N.: Respiratory properties of brown adipose tissue mitochondria from the Norwegian lemming. Comp. Biochem. Physiol. 56B (1977), 19–24.

    Google Scholar 

  7. Florant, G.L. and Heller, H.C.: CNS regulation of body temperature in euthermic and hibernating marmots (Marmota flaviventris). Am. J. Physiol. 232 (1977), R203–R208.

    Google Scholar 

  8. Harken, A.H.: Hydrogen ion concentration and oxygen uptake in an isolated canine hindlimb. J. Appl. Physiol. 40 (1976), 1–15.

    Google Scholar 

  9. Hart, J.S.: Rodents. p. 2–149, In: Comparative Physiology of Thermorégulation, G.C. Whittow ed. Vol. II. New York, Academic Press, 1971.

    Google Scholar 

  10. Hayward, J.S.: Nonshivering thermogenesis in hibernating animals. p. 119–137, In: Nonshivering thermogenesis, L. Jansky ed. Amsterdam, Swets & Zeitlinger, and Prague, Academia, 1971.

    Google Scholar 

  11. Heldmaier, G.: Relationship between nonshivering thermogenesis and body size. p. 73–81, In: Nonshivering thermogenesis, L. Janský ed. Amsterdam, Swets & Zeitlinger, and Prague, Academia, 1971.

    Google Scholar 

  12. Heller, H.C and Colliver, G.W.: CNS regulation of body temperature during hibernation. Am. J. Physiol. 227 (1974), 583–589.

    Google Scholar 

  13. Heller, H.C, Colliver, G.W. and Anand, P.: CNS regulation of body temperature in euthermic hibernators. Am. J. Physiol. 227 (1974), 576–582.

    Google Scholar 

  14. Heller, H.C, Colliver, G.W. and Beard, J.: Thermoregulation during entrance into hibernation. Pflügers Arch. 369 (1977), 55–59.

    Article  Google Scholar 

  15. Himms-Hagen, J.: Cellular thermogenesis. Ann. Rev. Physiol. 38 (1976), 315–351.

    Article  Google Scholar 

  16. Horwitz, B.A. and Nelson, L.: Effect of temperature on mitochondrial respiration in a hibernator (Myotis austroriparius) and a non-hibernator (Rattus rattus). Comp. Biochem. Physiol. 24 (1968), 385–394.

    Article  Google Scholar 

  17. Horwitz, B.A., Nelson, L. and Popovic, V.P.: Effect of temperature on oxidative phosphorylation in hibernators and nonhibernators. J. Appl. Physiol. 22 (1967), 639–644.

    Google Scholar 

  18. Hudson, J.W.: Torpidity in mammals, p. 97–165, In: Comparative Physiology of Thermorégulation, G.C. Whittow ed. Vol. III, New York, Academic Press. 1973.

    Google Scholar 

  19. Jansky, L.: Adaptability of heat production mechanisms in homeotherms. Biologica, Nr 1 (1965), 1-91.

    Google Scholar 

  20. Jansky, L.: Non-shivering thermogenesis and its thermoregulatory significance. Biol. Rev. 48 (1973), 85–132.

    Article  Google Scholar 

  21. Jansky, L. and Musacchia, X.J.: Regulation of depressed metabolism and thermogenesis. Springfield, Thomas, 1976.

    Google Scholar 

  22. Kayser, Ch.: The Physiology of Natural Hibernation. Oxford, Pergamon Press, 1961.

    Google Scholar 

  23. Kayser, Ch.: La dépense d’énergie des mammifères en hibernation. Arch. Sci. Physiol. 18 (1964), 137–150.

    Google Scholar 

  24. Lyman, C.P.: Hibernation in mammals and birds. Am. Scient. 51 (1963), 127–138.

    Google Scholar 

  25. Lyman, C.P. and Chatfield, P.O.: Mechanism of arousal in the hibernating hamster. J. exp. Zool. 114 (1950), 491–516.

    Article  Google Scholar 

  26. Malan, A.: Blood acid-base state at a variable temperature. A graphical representation. Respir. Physiol. 1977, in press.

    Google Scholar 

  27. Malan, A., Arens, H. and. Waechter, A.: Pulmonary respi ration and acid-base state in hibernating marmots and hamsters. Respir. Physiol. 17 (1973), 45–61.

    Article  Google Scholar 

  28. Malan, A., Daull, F. and Rodeau, J.L.: Relations entre les états acide-base extra-et intracellulaire dans l’acidose de l’hibernation. J. Physiol. (Paris), 1976, in press.

    Google Scholar 

  29. Malan, A., Fenet, J. and Daull, F.: Acid-base balance and ventilation in marmots rewarming from hibernation. In: Proc. Internat. Symp. on Depressed Metabolism and Cold Thermogenesis, L. Jansky and X.J. Musacchia eds., Prague, 1974, in press.

    Google Scholar 

  30. Moon, T.W. and Borgmann, A.I.: Enzymes of the normothermic and hibernating bat, Myotis lucifugus: Metabolites as modulators of pyruvate kinase. J. Comp. Physiol. 107 (1976), 201–210.

    Google Scholar 

  31. Nicholls, D.G.: Hamster brown-adipose-tissue mitochondria. The control of respiration and the proton electrochemical potential gradient by possible physiological effectors of the proton conductance of the inner membrane. Eur. J. Biochem. 49 (1974), 573–583.

    Article  Google Scholar 

  32. Park, Y.S. and Hong, S.K.: Properties of toad skin Na-K-ATPase with special reference to effect of temperature. Am. J. Physiol. 231 (1976), 1356–1363.

    Google Scholar 

  33. Pengelley, E.T. and Fisher, K.C.: The effect of temperature and photoperiod on the yearly hibernating behavior of captive golden-mantled ground squirrels, Citellus lateralis tescorum. Can. J. Zool. 41 (1963), 1103–1120.

    Article  Google Scholar 

  34. Petrović, V.M., Janić, V., Gripois, D. and Roffi, J.: Monoamine oxidase activity in the brown fat of the ground squirrel: influence of season, arousal from hibernation and the adrenal cortex. Comp. Biochem. Physiol. 51C (1975), 101–103.

    Google Scholar 

  35. Raison, J.K.: The influence of temperature-induced phase changes on the kinetics of respiratory and other membrane-associated enzyme systems. Bioenergetics 4 (1973), 285–309.

    Article  Google Scholar 

  36. Raison, J.K. and Lyons, J.M.: Hibernation: Alteration of mitochondrial membranes as a requisite for metabolism at low temperatures. Proc. Nat. Acad. Sci. 68 (1971), 2092–2094.

    Article  Google Scholar 

  37. Raths, P. and Kulzer, E.: Physiology of hibernation and related lethargic states in mammals and birds. Bonner Zoologische Monographen, 9 (1976), 1–93.

    Google Scholar 

  38. Rauch, J.C. and Beatty, D.D.: Comparison of regional blood distribution in Eptesicus fuscus (big brown bat) during torpor (summer), hibernation (winter) and arousal. Can. J. Zool. 53 (1975), 207–214.

    Article  Google Scholar 

  39. Reeves, R.B.: The interaction of body temperature and acid-base balance in ectothermic vertebrates. Ann. Rev. Physiol. 39 (1977), 559–586.

    Article  Google Scholar 

  40. Schaefer, K.E. and Wünnenberg, W.: Threshold temperatures for shivering in acute and chronic hypercapnia. J. Appl. Physiol. 41 (1976), 67–70.

    Google Scholar 

  41. Sexton, J.N., Albert, T.F., Ingling, A.L. and Douglass, L.W.: Comparison of spontaneous and evoked arousals from hibernation in the woodchuck, Marmota monax. Physiologist 19 (1976), 362.

    Google Scholar 

  42. Skaane, O., Christiansen, E.N., Pedersen, J.I. and Grav, H.J.: Oxidative properties of brown adipose tissue mitochondria from rats, guinea-pigs and hedgehogs. Comp. Biochem. Physiol. 42B (1972), 91–107.

    Google Scholar 

  43. South, F.E., Hannon, J.P., Willis, J.S., Pengelley, E.T. and Alpert, N.R.: Hibernation and hypothermia, perspectives and challenges. New York, Elsevier, 1972.

    Google Scholar 

  44. South, F.E., Hartner, W.C and Luecke, R.H.: Responses to preoptic temperature manipulation in the awake and hibernating marmot. Am. J. Physiol. 229 (1975), 150–160.

    Google Scholar 

  45. Trivedi, B. and Danforth, W.H.: Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241 (1966), 4110–4112.

    Google Scholar 

  46. Wang, L.C.H. and Hudson, J.W.: Temperature regulation in normothermic and hibernating eastern chipmunk, Tamias striatus, Comp. Biochem. Physiol. 38A (1971), 59–90.

    Google Scholar 

  47. Williams, B.A. and Heath, J.E.: Thermoregulatory responses of a hibernator to preoptic and environmental temperatures. Am. J. Physiol. 221 (1971), 1134–1138.

    Google Scholar 

  48. Wünnenberg, W., Merker, G. and Brück, K.: Do corticosteroids control heat production in hibernators? Pflügers Arch. 352 (1974), 11–16.

    Article  Google Scholar 

  49. Wünnenberg, W., Merker, G. and Speulda, E.: Thermosensitivity of preoptic neurones in a hibernator (Golden hamster) and a non-hibernator (Guinea pig). Pflügers Arch. 363 (1976), 119–123.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer Basel AG

About this paper

Cite this paper

Malan, A. (1978). Hibernation as a Model for Studies on Thermogenesis and its Control. In: Girardier, L., Seydoux, J. (eds) Effectors of Thermogenesis. Experientia Supplementum, vol 32. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-5559-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-5559-4_35

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-5561-7

  • Online ISBN: 978-3-0348-5559-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics