Skip to main content

On the Role of Co-inhibitory Molecules in Dendritic Cell: T Helper Cell Coculture Assays Aimed to Detect Chemical-Induced Contact Allergy

  • Chapter
  • First Online:
T Lymphocytes as Tools in Diagnostics and Immunotoxicology

Part of the book series: Experientia Supplementum ((EXS,volume 104))

  • 1600 Accesses

Abstract

T cells play a pivotal role in sensitization and elicitation of type IV allergic reactions. While T helper cells sustain and maintain the differentiation of further effector cells, regulatory T cells are involved in control of cytokine release and proliferation, and T killer cells execute cellular lysis, thereby leading to certain levels of tissue damage. According to their central role, the widely applied and OECD-supported test method for the assessment of the sensitization potential of a chemical, i.e., the local lymph node assay (LLNA), relies on the detection of the immune-responsive proliferation of lymphocytes. However, most sensitization assays recently developed take advantage of the initiators of sensitization, dendritic cells (DCs) or DC-like cell lines. Here, we focus on inhibitory molecules expressed on the surface of DCs and their corresponding receptors on T cells. We summarize insight into the function of CTLA-4, the ligands of inducible co-stimulators (ICOSs), and on the inhibitory receptor programmed death (PD). The targeting of immune cell surface receptors by inhibitory molecules holds some promise with regard to the development of T cell-based sensitization assays. Firstly, a broader and more sensitive dynamic range of detection could be achieved by blocking inhibitors or by removing inhibiting regulatory T cells from the assays. Secondly, the actual expression levels of inhibitory molecules could be also a valuable indicator for the process of sensitization. Finally, inhibitory molecules in coculture test systems are supposed to have a major influence on DCs by reverse signaling, thereby affecting their differentiation and maturation status in a feedback loop. In conclusion, inhibitory ligands of DC surface receptors and/or their cognate receptors on T cells could serve as useful tools in cell-based assays, directly influencing toxicological endpoints such as sensitization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACD:

Allergic contact dermatitis

CTLA-4:

Cytotoxic lymphocyte-associated antigen-4

DC:

Dendritic cell

DNCB:

2,4-Dinitrochlorobenzene

DNFB:

2,4-Dinitrofluorobenzene

ICOS:

Inducible co-stimulator

LC:

Langerhans cell

LLNA:

Local lymph node assay

MoDC:

Monocyte-derived DC

PBMC:

Peripheral blood mononuclear cell

PD:

Programmed death

Th:

T helper

Treg :

Regulatory T cell

References

  • Acosta-Rodriguez EV, Rivino L, Geginat J, Jarrossay D, Gattorno M, Lanzavecchia A, Sallusto F, Napolitani G (2007) Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells. Nat Immunol 8:639–646

    PubMed  CAS  Google Scholar 

  • Ade N, Martinozzi-Teissier S, Pallardy M, Rousset F (2006) Activation of U937 cells by contact sensitizers: CD86 expression is independent of apoptosis. J Immunotoxicol 3:189–197

    PubMed  CAS  Google Scholar 

  • Adler S, Bicker G, Bigalke H, Bishop C, Blumel J, Dressler D, Fitzgerald J, Gessler F, Heuschen H, Kegel B, Luch A, Milne C, Pickett A, Ratsch H, Ruhdel I, Sesardic D, Stephens M, Stiens G, Thornton PD, Thurmer R, Vey M, Spielmann H, Grune B, Liebsch M (2010) The current scientific and legal status of alternative methods to the LD50 test for botulinum neurotoxin potency testing. The report and recommendations of a ZEBET Expert Meeting. Altern Lab Anim 38:315–330

    PubMed  CAS  Google Scholar 

  • Adler S, Basketter D, Creton S, Pelkonen O, Van BJ, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tahti H, Testai E, Van DJ, Van LH, Vinken M, Worth A, Zaldivar JM (2011) Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 85:367–485

    PubMed  CAS  Google Scholar 

  • Aiba S, Katz SI (1990) Phenotypic and functional characteristics of in vivo-activated Langerhans cells. J Immunol 145:2791–2796

    PubMed  CAS  Google Scholar 

  • Aiba S, Terunuma A, Manome H, Tagami H (1997) Dendritic cells differently respond to haptens and irritants by their production of cytokines and expression of co-stimulatory molecules. Eur J Immunol 27:3031–3038

    PubMed  CAS  Google Scholar 

  • Akbari O, Stock P, Singh AK, Lombardi V, Lee WL, Freeman GJ, Sharpe AH, Umetsu DT, Dekruyff RH (2010) PD-L1 and PD-L2 modulate airway inflammation and iNKT-cell-dependent airway hyperreactivity in opposing directions. Mucosal Immunol 3:81–91

    PubMed  CAS  Google Scholar 

  • Asherson GL, Zembala M (1970) Contact sensitivity in the mouse. IV. The role of lymphocytes and macrophages in passive transfer and the mechanism of their interaction. J Exp Med 132:1–15

    PubMed  CAS  Google Scholar 

  • Ashikaga T, Yoshida Y, Hirota M, Yoneyama K, Itagaki H, Sakaguchi H, Miyazawa M, Ito Y, Suzuki H, Toyoda H (2006) Development of an in vitro skin sensitization test using human cell lines: the human Cell Line Activation Test (h-CLAT). I. Optimization of the h-CLAT protocol. Toxicol In Vitro 20:767–773

    PubMed  CAS  Google Scholar 

  • Atarashi K, Mori T, Yoshiki R, Kabashima K, Kuma H, Tokura Y (2009) Skin application of ketoprofen systemically suppresses contact hypersensitivity by inducing CD4(+) CD25(+) regulatory T cells. J Dermatol Sci 53:216–221

    PubMed  CAS  Google Scholar 

  • Azam P, Peiffer JL, Chamousset D, Tissier MH, Bonnet PA, Vian L, Fabre I, Ourlin JC (2006) The cytokine-dependent MUTZ-3 cell line as an in vitro model for the screening of contact sensitizers. Toxicol Appl Pharmacol 212:14–23

    PubMed  CAS  Google Scholar 

  • Bangert C, Friedl J, Stary G, Stingl G, Kopp T (2003) Immunopathologic features of allergic contact dermatitis in humans: participation of plasmacytoid dendritic cells in the pathogenesis of the disease? J Invest Dermatol 121:1409–1418

    PubMed  CAS  Google Scholar 

  • Blauvelt A, Hwang ST, Udey MC (2003) 11. Allergic and immunologic diseases of the skin. J Allergy Clin Immunol 111:S560–S570

    PubMed  CAS  Google Scholar 

  • Bluestone JA, Mackay CR, O’Shea JJ, Stockinger B (2009) The functional plasticity of T cell subsets. Nat Rev Immunol 9:811–816

    PubMed  CAS  Google Scholar 

  • Buehler EV (1965) Delayed contact hypersensitivity in the guinea pig. Arch Dermatol 91:171–177

    PubMed  CAS  Google Scholar 

  • Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ (2007) Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    PubMed  CAS  Google Scholar 

  • Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J (1992) GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature 360:258–261

    PubMed  CAS  Google Scholar 

  • Cavani A (2008) Immune regulatory mechanisms in allergic contact dermatitis and contact sensitization. Chem Immunol Allergy 94:93–100

    PubMed  CAS  Google Scholar 

  • Cavani A, Nasorri F, Ottaviani C, Sebastiani S, De PO, Girolomoni G (2003) Human CD25+ regulatory T cells maintain immune tolerance to nickel in healthy, nonallergic individuals. J Immunol 171:5760–5768

    PubMed  CAS  Google Scholar 

  • Chang HC, Sehra S, Goswami R, Yao W, Yu Q, Stritesky GL, Jabeen R, McKinley C, Ahyi AN, Han L, Nguyen ET, Robertson MJ, Perumal NB, Tepper RS, Nutt SL, Kaplan MH (2010) The transcription factor PU.1 is required for the development of IL-9-producing T cells and allergic inflammation. Nat Immunol 11:527–534

    PubMed  CAS  Google Scholar 

  • Chen YQ, Shi HZ (2006) CD28/CTLA-4–CD80/CD86 and ICOS–B7RP–1 costimulatory pathway in bronchial asthma. Allergy 61:15–26

    PubMed  CAS  Google Scholar 

  • Cho S, Mehra V, Thoma-Uszynski S, Stenger S, Serbina N, Mazzaccaro RJ, Flynn JL, Barnes PF, Southwood S, Celis E, Bloom BR, Modlin RL, Sette A (2000) Antimicrobial activity of MHC class I-restricted CD8+ T cells in human tuberculosis. Proc Natl Acad Sci U S A 97:12210–12215

    PubMed  CAS  Google Scholar 

  • Dennert G, Hatlen LE (1975) Are contact hypersensitivity cells cytotoxic? Nature 257:486–488

    PubMed  CAS  Google Scholar 

  • Dong C, Juedes AE, Temann UA, Shresta S, Allison JP, Ruddle NH, Flavell RA (2001) ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 409:97–101

    PubMed  CAS  Google Scholar 

  • dos Santos GG, Reinders J, Ouwehand K, Rustemeyer T, Scheper RJ, Gibbs S (2009) Progress on the development of human in vitro dendritic cell based assays for assessment of the sensitizing potential of a compound. Toxicol Appl Pharmacol 236:372–382

    PubMed  Google Scholar 

  • Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F (2009) Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol 10:857–863

    PubMed  CAS  Google Scholar 

  • Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, Durham SR, Schmidt-Weber CB, Cavani A (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119:3573–3585

    PubMed  CAS  Google Scholar 

  • Fife BT, Bluestone JA (2008) Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 224:166–182

    PubMed  CAS  Google Scholar 

  • Fonacier LS, Dreskin SC, Leung DY (2010) Allergic skin diseases. J Allergy Clin Immunol 125:S138–S149

    PubMed  Google Scholar 

  • Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    PubMed  CAS  Google Scholar 

  • Furio L, Briotet I, Journeaux A, Billard H, Peguet-Navarro J (2010) Human langerhans cells are more efficient than CD14(−)CD1c(+) dermal dendritic cells at priming naive CD4(+) T cells. J Invest Dermatol 130:1345–1354

    PubMed  CAS  Google Scholar 

  • Gocinski BL, Tigelaar RE (1990) Roles of CD4+ and CD8+ T cells in murine contact sensitivity revealed by in vivo monoclonal antibody depletion. J Immunol 144:4121–4128

    PubMed  CAS  Google Scholar 

  • Grabbe S, Schwarz T (1998) Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 19:37–44

    PubMed  CAS  Google Scholar 

  • Grakoui A, Bromley SK, Sumen C, Davis MM, Shaw AS, Allen PM, Dustin ML (1999) The immunological synapse: a molecular machine controlling T cell activation. Science 285:221–227

    PubMed  CAS  Google Scholar 

  • Greenwald RJ, Freeman GJ, Sharpe AH (2005) The B7 family revisited. Annu Rev Immunol 23:515–548

    PubMed  Google Scholar 

  • Hitzler M, Majdic O, Heine G, Worm M, Ebert G, Luch A, Peiser M (2012) Human Langerhans cells control Th cells via programmed death-ligand 1 in response to bacterial stimuli and nickel-induced contact allergy. PLoS One 7(10):e46776. doi: 10.1371/journal.pone.0046776.

  • Hu ZB, Ma W, Zaborski M, MacLeod R, Quentmeier H, Drexler HG (1996) Establishment and characterization of two novel cytokine-responsive acute myeloid and monocytic leukemia cell lines, MUTZ-2 and MUTZ-3. Leukemia 10:1025–1040

    PubMed  CAS  Google Scholar 

  • Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    PubMed  CAS  Google Scholar 

  • Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, Qin XF, Liu YJ, Gilliet M (2007) Plasmacytoid dendritic cells prime IL-10-producing T regulatory cells by inducible costimulator ligand. J Exp Med 204:105–115

    PubMed  CAS  Google Scholar 

  • Janic B, Iskander AS, Rad AM, Soltanian-Zadeh H, Arbab AS (2008) Effects of ferumoxides-protamine sulfate labeling on immunomodulatory characteristics of macrophage-like THP-1 cells. PLoS One 3:e2499

    PubMed  Google Scholar 

  • Jutel M, Akdis CA (2011) T-cell subset regulation in atopy. Curr Allergy Asthma Rep 11:139–145

    PubMed  CAS  Google Scholar 

  • Kalish RS, Morimoto C (1988) Urushiol (poison ivy)-triggered suppressor T cell clone generated from peripheral blood. J Clin Invest 82:825–832

    PubMed  CAS  Google Scholar 

  • Kaplan DH, Kissenpfennig A, Clausen BE (2008) Insights into Langerhans cell function from Langerhans cell ablation models. Eur J Immunol 38:2369–2376

    PubMed  CAS  Google Scholar 

  • Kapsenberg ML (2003) Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol 3:984–993

    PubMed  CAS  Google Scholar 

  • Kapsenberg ML, Wierenga EA, Stiekema FE, Tiggelman AM, Bos JD (1992) Th1 lymphokine production profiles of nickel-specific CD4+T-lymphocyte clones from nickel contact allergic and non-allergic individuals. J Invest Dermatol 98:59–63

    PubMed  CAS  Google Scholar 

  • Karakhanova S, Meisel S, Ring S, Mahnke K, Enk AH (2010) ERK/p38 MAP-kinases and PI3K are involved in the differential regulation of B7-H1 expression in DC subsets. Eur J Immunol 40:254–266

    PubMed  CAS  Google Scholar 

  • Kaufmann DE, Kavanagh DG, Pereyra F, Zaunders JJ, Mackey EW, Miura T, Palmer S, Brockman M, Rathod A, Piechocka-Trocha A, Baker B, Zhu B, Le GS, Waring MT, Ahern R, Moss K, Kelleher AD, Coffin JM, Freeman GJ, Rosenberg ES, Walker BD (2007) Up-regulation of CTLA-4 by HIV-specific CD4+ T cells correlates with disease progression and defines a reversible immune dysfunction. Nat Immunol 8:1246–1254

    PubMed  CAS  Google Scholar 

  • Keir ME, Butte MJ, Freeman GJ, Sharpe AH (2008) PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 26:677–704

    PubMed  CAS  Google Scholar 

  • Kim HK, Guan H, Zu G, Li H, Wu L, Feng X, Elmets C, Fu Y, Xu H (2006) High-level expression of B7-H1 molecules by dendritic cells suppresses the function of activated T cells and desensitizes allergen-primed animals. J Leukoc Biol 79:686–695

    PubMed  CAS  Google Scholar 

  • Kimber I, Weisenberger C (1989) A murine local lymph node assay for the identification of contact allergens. Assay development and results of an initial validation study. Arch Toxicol 63:274–282

    PubMed  CAS  Google Scholar 

  • Kirchberger S, Majdic O, Steinberger P, Bluml S, Pfistershammer K, Zlabinger G, Deszcz L, Kuechler E, Knapp W, Stockl J (2005) Human rhinoviruses inhibit the accessory function of dendritic cells by inducing sialoadhesin and B7-H1 expression. J Immunol 175:1145–1152

    PubMed  CAS  Google Scholar 

  • Kissenpfennig A, Henri S, Dubois B, Laplace-Builhe C, Perrin P, Romani N, Tripp CH, Douillard P, Leserman L, Kaiserlian D, Saeland S, Davoust J, Malissen B (2005) Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22:643–654

    PubMed  CAS  Google Scholar 

  • Larsen JM, Bonefeld CM, Poulsen SS, Geisler C, Skov L (2009) IL-23 and T(H)17-mediated inflammation in human allergic contact dermatitis. J Allergy Clin Immunol 123:486–492

    PubMed  CAS  Google Scholar 

  • Lazar-Molnar E, Yan Q, Cao E, Ramagopal U, Nathenson SG, Almo SC (2008) Crystal structure of the complex between programmed death-1 (PD-1) and its ligand PD-L2. Proc Natl Acad Sci U S A 105:10483–10488

    PubMed  CAS  Google Scholar 

  • Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258

    PubMed  CAS  Google Scholar 

  • Magnusson B, Kligman AM (1969) The identification of contact allergens by animal assay. The guinea pig maximization test. J Invest Dermatol 52:268–276

    PubMed  CAS  Google Scholar 

  • Masterson AJ, Sombroek CC, de Gruijl TD, Graus YM, van der Vliet HJ, Lougheed SM, van den Eertwegh AJ, Pinedo HM, Scheper RJ (2002) MUTZ-3, a human cell line model for the cytokine-induced differentiation of dendritic cells from CD34+ precursors. Blood 100:701–703

    PubMed  CAS  Google Scholar 

  • McMillan EM, Stoneking L, Burdick S, Cowan I, Husain-Hamzavi SL (1985) Immunophenotype of lymphoid cells in positive patch tests of allergic contact dermatitis. J Invest Dermatol 84:229–233

    PubMed  CAS  Google Scholar 

  • Meierhoff G, Krause SW, Andreesen R (1998) Comparative analysis of dendritic cells derived from blood monocytes or CD34+ hematopoietic progenitor cells. Immunobiology 198:501–513

    PubMed  CAS  Google Scholar 

  • Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL (1986) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2348–2357

    PubMed  CAS  Google Scholar 

  • Murphy KM, Reiner SL (2002) The lineage decisions of helper T cells. Nat Rev Immunol 2:933–944

    PubMed  CAS  Google Scholar 

  • Murphy KM, Stockinger B (2010) Effector T cell plasticity: flexibility in the face of changing circumstances. Nat Immunol 11:674–680

    PubMed  CAS  Google Scholar 

  • Nestle FO, Di MP, Qin JZ, Nickoloff BJ (2009) Skin immune sentinels in health and disease. Nat Rev Immunol 9:679–691

    PubMed  CAS  Google Scholar 

  • Nuriya S, Enomoto S, Azuma M (2001) The role of CTLA-4 in murine contact hypersensitivity. J Invest Dermatol 116:764–768

    PubMed  CAS  Google Scholar 

  • Okazaki T, Honjo T (2007) PD-1 and PD-1 ligands: from discovery to clinical application. Int Immunol 19:813–824

    PubMed  CAS  Google Scholar 

  • Oosterwegel MA, Mandelbrot DA, Boyd SD, Lorsbach RB, Jarrett DY, Abbas AK, Sharpe AH (1999) The role of CTLA-4 in regulating Th2 differentiation. J Immunol 163:2634–2639

    PubMed  CAS  Google Scholar 

  • O'Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–1102

    PubMed  Google Scholar 

  • Pandiyan P, Gartner D, Soezeri O, Radbruch A, Schulze-Osthoff K, Brunner-Weinzierl MC (2004) CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function. J Exp Med 199:831–842

    PubMed  CAS  Google Scholar 

  • Pena-Cruz V, McDonough SM, Diaz-Griffero F, Crum CP, Carrasco RD, Freeman GJ (2010) PD-1 on immature and PD-1 ligands on migratory human Langerhans cells regulate antigen-presenting cell activity. J Invest Dermatol 130:2222–2230

    PubMed  CAS  Google Scholar 

  • Probst P, Kuntzlin D, Fleischer B (1995) TH2-type infiltrating T cells in nickel-induced contact dermatitis. Cell Immunol 165:134–140

    PubMed  CAS  Google Scholar 

  • Putheti P, Awasthi A, Popoola J, Gao W, Strom TB (2010) Human CD4 memory T cells can become CD4+IL-9+ T cells. PLoS One 5:e8706

    PubMed  Google Scholar 

  • Python F, Goebel C, Aeby P (2007) Assessment of the U937 cell line for the detection of contact allergens. Toxicol Appl Pharmacol 220:113–124

    PubMed  CAS  Google Scholar 

  • Quentmeier H, Duschl A, Hu ZB, Schnarr B, Zaborski M, Drexler HG (1996) MUTZ-3, a monocytic model cell line for interleukin-4 and lipopolysaccharide studies. Immunology 89:606–612

    PubMed  CAS  Google Scholar 

  • Saint-Mezard P, Rosieres A, Krasteva M, Berard F, Dubois B, Kaiserlian D, Nicolas JF (2004) Allergic contact dermatitis. Eur J Dermatol 14:284–295

    PubMed  CAS  Google Scholar 

  • Sakaguchi H, Ashikaga T, Miyazawa M, Yoshida Y, Ito Y, Yoneyama K, Hirota M, Itagaki H, Toyoda H, Suzuki H (2006) Development of an in vitro skin sensitization test using human cell lines; human Cell Line Activation Test (h-CLAT). II. An inter-laboratory study of the h-CLAT. Toxicol In Vitro 20:774–784

    PubMed  CAS  Google Scholar 

  • Santegoets SJ, Masterson AJ, van der Sluis PC, Lougheed SM, Fluitsma DM, van den Eertwegh AJ, Pinedo HM, Scheper RJ, de Gruijl TD (2006) A CD34(+) human cell line model of myeloid dendritic cell differentiation: evidence for a CD14(+)CD11b(+) Langerhans cell precursor. J Leukoc Biol 80:1337–1344

    PubMed  CAS  Google Scholar 

  • Santegoets SJ, Bontkes HJ, Stam AG, Bhoelan F, Ruizendaal JJ, van den Eertwegh AJ, Hooijberg E, Scheper RJ, de Gruijl TD (2008) Inducing antitumor T cell immunity: comparative functional analysis of interstitial versus Langerhans dendritic cells in a human cell line model. J Immunol 180:4540–4549

    PubMed  CAS  Google Scholar 

  • Schwarz A, Beissert S, Grosse-Heitmeyer K, Gunzer M, Bluestone JA, Grabbe S, Schwarz T (2000) Evidence for functional relevance of CTLA-4 in ultraviolet-radiation-induced tolerance. J Immunol 165:1824–1831

    PubMed  CAS  Google Scholar 

  • Sharpe AH, Wherry EJ, Ahmed R, Freeman GJ (2007) The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol 8:239–245

    PubMed  CAS  Google Scholar 

  • Simpson TR, Quezada SA, Allison JP (2010) Regulation of CD4 T cell activation and effector function by inducible costimulator (ICOS). Curr Opin Immunol 22:326–332

    PubMed  CAS  Google Scholar 

  • Singh AK, Stock P, Akbari O (2011) Role of PD-L1 and PD-L2 in allergic diseases and asthma. Allergy 66:155–162

    PubMed  CAS  Google Scholar 

  • Sinigaglia F, Scheidegger D, Garotta G, Scheper R, Pletscher M, Lanzavecchia A (1985) Isolation and characterization of Ni-specific T cell clones from patients with Ni-contact dermatitis. J Immunol 135:3929–3932

    PubMed  CAS  Google Scholar 

  • Stonehouse TJ, Woodhead VE, Herridge PS, Ashrafian H, George M, Chain BM, Katz DR (1999) Molecular characterization of U937-dependent T-cell co-stimulation. Immunology 96:35–47

    PubMed  CAS  Google Scholar 

  • Suarez N, Alfaro C, Dubrot J, Palazon A, Bolanos E, Erro L, Hervas-Stubbs S, Martinez-Forero I, Morales-Kastresana A, Martin-Algarra S, Sangro B, Lecanda F, Perez-Gracia JL, Gonzalez A, Melero I (2011) Synergistic effects of CTLA-4 blockade with tremelimumab and elimination of regulatory T lymphocytes in vitro and in vivo. Int J Cancer 129:374–386

    PubMed  CAS  Google Scholar 

  • Sundstrom C, Nilsson K (1976) Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer 17:565–577

    PubMed  CAS  Google Scholar 

  • Takahashi C, Nishikawa S, Katsura Y, Izumi T (1977) Anti-DNP antibody response after the topical application of DNFB in mice. Immunology 33:589–596

    PubMed  CAS  Google Scholar 

  • Tang A, Judge TA, Nickoloff BJ, Turka LA (1996) Suppression of murine allergic contact dermatitis by CTLA4Ig. Tolerance induction of Th2 responses requires additional blockade of CD40-ligand. J Immunol 157:117–125

    PubMed  CAS  Google Scholar 

  • Teft WA, Kirchhof MG, Madrenas J (2006) A molecular perspective of CTLA-4 function. Annu Rev Immunol 24:65–97

    PubMed  CAS  Google Scholar 

  • Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H (2009) Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 10:864–871

    PubMed  CAS  Google Scholar 

  • Tsushima F, Iwai H, Otsuki N, Abe M, Hirose S, Yamazaki T, Akiba H, Yagita H, Takahashi Y, Omura K, Okumura K, Azuma M (2003) Preferential contribution of B7-H1 to programmed death-1-mediated regulation of hapten-specific allergic inflammatory responses. Eur J Immunol 33:2773–2782

    PubMed  CAS  Google Scholar 

  • Virelizier JL, Perez N, Arenzana-Seisdedos F, Devos R (1984) Pure interferon gamma enhances class II HLA antigens on human monocyte cell lines. Eur J Immunol 14:106–108

    PubMed  CAS  Google Scholar 

  • Vocanson M, Cluzel-Tailhardat M, Poyet G, Valeyrie M, Chavagnac C, Levarlet B, Courtellemont P, Rozieres A, Hennino A, Nicolas JF (2008) Depletion of human peripheral blood lymphocytes in CD25+ cells allows for the sensitive in vitro screening of contact allergens. J Invest Dermatol 128:2119–2122

    PubMed  CAS  Google Scholar 

  • Vocanson M, Hennino A, Rozieres A, Poyet G, Nicolas JF (2009) Effector and regulatory mechanisms in allergic contact dermatitis. Allergy 64:1699–1714

    PubMed  CAS  Google Scholar 

  • Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V, Renaudineau S, Achachi A, Benetiere J, Kaiserlian D, Dubois B, Nicolas JF (2010) Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 126(280–9):289

    Google Scholar 

  • Walunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, Thompson CB, Bluestone JA (1994) CTLA-4 can function as a negative regulator of T cell activation. Immunity 1:405–413

    PubMed  CAS  Google Scholar 

  • Williams EH, Williams CA, McLeod JD (2010) Identification of PDL-1 as a novel biomarker of sensitizer exposure in dendritic-like cells. Toxicol In Vitro 24:1727–1735

    PubMed  CAS  Google Scholar 

  • Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F, Lecron JC, Kastelein RA, Cua DJ, McClanahan TK, Bowman EP, de Waal MR (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957

    PubMed  CAS  Google Scholar 

  • Witsch EJ, Peiser M, Hutloff A, Buchner K, Dorner BG, Jonuleit H, Mages HW, Kroczek RA (2002) ICOS and CD28 reversely regulate IL-10 on re-activation of human effector T cells with mature dendritic cells. Eur J Immunol 32:2680–2686

    PubMed  CAS  Google Scholar 

  • Wong SC, Tan AH, Lam KP (2009) Functional hierarchy and relative contribution of the CD28/B7 and ICOS/B7-H2 costimulatory pathways to T cell-mediated delayed-type hypersensitivity. Cell Immunol 256:64–71

    PubMed  CAS  Google Scholar 

  • Xu H, DiIulio NA, Fairchild RL (1996) T cell populations primed by hapten sensitization in contact sensitivity are distinguished by polarized patterns of cytokine production: interferon gamma-producing (Tc1) effector CD8+ T cells and interleukin (Il) 4/Il-10-producing (Th2) negative regulatory CD4+ T cells. J Exp Med 183:1001–1012

    PubMed  CAS  Google Scholar 

  • Yamazaki T, Akiba H, Koyanagi A, Azuma M, Yagita H, Okumura K (2005) Blockade of B7-H1 on macrophages suppresses CD4+ T cell proliferation by augmenting IFN-gamma-induced nitric oxide production. J Immunol 175:1586–1592

    PubMed  CAS  Google Scholar 

  • Yawalkar N, Hunger RE, Buri C, Schmid S, Egli F, Brand CU, Mueller C, Pichler WJ, Braathen LR (2001) A comparative study of the expression of cytotoxic proteins in allergic contact dermatitis and psoriasis: spongiotic skin lesions in allergic contact dermatitis are highly infiltrated by T cells expressing perforin and granzyme B. Am J Pathol 158:803–808

    PubMed  CAS  Google Scholar 

  • Yoshida Y, Sakaguchi H, Ito Y, Okuda M, Suzuki H (2003) Evaluation of the skin sensitization potential of chemicals using expression of co-stimulatory molecules, CD54 and CD86, on the naive THP-1 cell line. Toxicol In Vitro 17:221–228

    PubMed  CAS  Google Scholar 

  • Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW, Senaldi G (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832

    PubMed  CAS  Google Scholar 

  • Zembala M, Asherson GL (1973) The role of T cells in the passive transfer of contact sensitivity and their occurrence in the bone marrow. Eur J Immunol 3:667–680

    PubMed  CAS  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations. Annu Rev Immunol 28:445–489

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by intramural grant SFP1322-345 and the German Federal Ministry of Education and Research (BMBF), project #0315724.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Peiser or Andreas Luch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Peiser, M., Hitzler, M., Luch, A. (2014). On the Role of Co-inhibitory Molecules in Dendritic Cell: T Helper Cell Coculture Assays Aimed to Detect Chemical-Induced Contact Allergy. In: Martin, S. (eds) T Lymphocytes as Tools in Diagnostics and Immunotoxicology. Experientia Supplementum, vol 104. Springer, Basel. https://doi.org/10.1007/978-3-0348-0726-5_9

Download citation

Publish with us

Policies and ethics