Skip to main content

Basic Properties of Variable Sobolev Spaces

  • Chapter
  • First Online:
  • 1795 Accesses

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

In this chapter we present the elementary theory of variable Sobolev spaces. Unlike Chap. 2, where we systematically developed a complete theory of variable Lebesgue spaces, our goal here is less ambitious. Our aim is to illustrate how the theorems and techniques given in previous chapters can be applied to the variable Sobolev spaces. Consequently, many of our results are not given in the fullest generality possible, and there are a number of results from the classical theory of Sobolev spaces that we do not discuss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Bibliography

  1. R. A. Adams and J. J. F. Fournier. Sobolev Spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003.

    MATH  Google Scholar 

  2. A. Almeida and S. Samko. Pointwise inequalities in variable Sobolev spaces and applications. Z. Anal. Anwend., 26(2):179–193, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Almeida and S. Samko. Embeddings of variable Hajłasz-Sobolev spaces into Hölder spaces of variable order. J. Math. Anal. Appl., 353(2):489–496, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. A. Bandaliev and M. M. Abbasova. On an inequality and p(x)-mean continuity in the variable Lebesgue space with mixed norm. Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26(7, Math. Mech.):47–56, 2006.

    Google Scholar 

  5. M. Bocea, M. Mihăilescu, and C. Popovici. On the asymptotic behavior of variable exponent power-law functionals and applications. Ric. Mat., 59(2):207–238, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bourgain, H. Brezis, and P. Mironescu. Another look at Sobolev spaces. Menaldi, José Luis (ed.) et al., Optimal control and partial differential equations. In honour of Professor Alain Bensoussan’s 60th birthday. Proceedings of the conference, Paris, France, December 4, 2000. Amsterdam: IOS Press; Tokyo: Ohmsha. 439–455 (2001)., 2001.

    Google Scholar 

  7. A. P. Calderón. Lebesgue spaces of differentiable functions and distributions. In Proc. Sympos. Pure Math., Vol. IV, pages 33–49. American Mathematical Society, Providence, R.I., 1961.

    Google Scholar 

  8. C. Capone, D. Cruz-Uribe, and A. Fiorenza. The fractional maximal operator and fractional integrals on variable L p spaces. Rev. Mat. Iberoam., 23(3):743–770, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Çekiç, R. A. Mashiyev, and G. T. Alisoy. On the Sobolev-type inequality for Lebesgue spaces with a variable exponent. Int. Math. Forum, 1(25–28):1313–1323, 2006.

    MathSciNet  MATH  Google Scholar 

  10. P. Cianci and F. Nicolosi. A weighted interpolation inequality with variable exponent of the Nirenberg-Gagliardo kind. Nonlinear Anal., 71(12):5915–5929, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. G. Ciarlet and G. Dinca. A Poincaré inequality in a Sobolev space with a variable exponent. Chin. Ann. Math. Ser. B, 32(3):333–342, 2011.

    Article  MathSciNet  Google Scholar 

  12. J. B. Conway. A Course in Functional Analysis, volume 96 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.

    MATH  Google Scholar 

  13. D. Cruz-Uribe and A. Fiorenza. Approximate identities in variable L p spaces. Math. Nachr., 280(3):256–270, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez. The boundedness of classical operators on variable L p spaces. Ann. Acad. Sci. Fenn. Math., 31(1):239–264, 2006.

    MathSciNet  Google Scholar 

  15. D. Cruz-Uribe, J. M. Martell, and C. Pérez. Weights, Extrapolation and the Theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications. Birkhäuser/Springer Basel AG, Basel, 2011.

    Book  MATH  Google Scholar 

  16. F. Demengel and G. Demengel. Espaces fonctionnels. Savoirs Actuels (Les Ulis). [Current Scholarship (Les Ulis)]. EDP Sciences, Les Ulis, 2007. Utilisation dans la résolution des équations aux dérivées partielles. [Application to the solution of partial differential equations].

    Google Scholar 

  17. L. Diening. Maximal function on generalized Lebesgue spaces L p(⋅). Math. Inequal. Appl., 7(2):245–253, 2004.

    MathSciNet  MATH  Google Scholar 

  18. L. Diening. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p(⋅) and W k, p(⋅). Math. Nachr., 268:31–43, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  19. L. Diening, P. Harjulehto, P. Hästö, and M. R˚užička. Lebesgue and Sobolev spaces with Variable Exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011.

    Google Scholar 

  20. L. Diening and P. Hästö. Variable exponent trace spaces. Studia Math., 183(2):127–141, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Diening and P. Hästö. Further results on variable exponent trace spaces. In H. G. W. Begehr and F. Nicolosi, editors, More progresses in analysis: Proceedings of the 5th International ISAAC Congress held at the University of Catania, Catania, July 25–30, 2005, pages 101–106. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.

    Google Scholar 

  22. L. Diening, P. Hästö, and A. Nekvinda. Open problems in variable exponent Lebesgue and Sobolev spaces. In FSDONA04 Proceedings (Drabek and Rakosnik (eds.); Milovy, Czech Republic, pages 38–58. Academy of Sciences of the Czech Republic, Prague, 2005.

    Google Scholar 

  23. N. Dunford and J. T. Schwartz. Linear Operators. Part I. Wiley Classics Library. John Wiley & Sons Inc., New York, 1988. General theory, With the assistance of William G. Bade and R. G. Bartle, Reprint of the 1958 original, A Wiley-Interscience Publication.

    Google Scholar 

  24. D. E. Edmunds and J. Rákosník. Density of smooth functions in \({W}^{k,p(x)}(\Omega )\). Proc. Roy. Soc. London Ser. A, 437(1899):229–236, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  25. D. E. Edmunds and J. Rákosník. Sobolev embeddings with variable exponent. Studia Math., 143(3):267–293, 2000.

    MathSciNet  MATH  Google Scholar 

  26. D. E. Edmunds and J. Rákosník. Sobolev embeddings with variable exponent. II. Math. Nachr., 246/247:53–67, 2002.

    Google Scholar 

  27. L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992.

    MATH  Google Scholar 

  28. X. Fan. Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl., 339(2):1395–1412, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  29. X. Fan. Sobolev embeddings for unbounded domain with variable exponent having values across N. Math. Inequal. Appl., 13(1):123–134, 2010.

    Google Scholar 

  30. X. Fan and X. Han. Existence and multiplicity of solutions for p(x)-Laplacian equations in R N. Nonlinear Anal., 59(1–2):173–188, 2004.

    MathSciNet  MATH  Google Scholar 

  31. X. Fan, J. Shen, and D. Zhao. Sobolev embedding theorems for spaces \({W}^{k,p(x)}(\Omega )\). J. Math. Anal. Appl., 262(2):749–760, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  32. X. Fan, S. Wang, and D. Zhao. Density of \({C}^{\infty }(\Omega )\) in \({W}^{1,p(x)}(\Omega )\) with discontinuous exponent p(x). Math. Nachr., 279(1–2):142–149, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  33. X. Fan and D. Zhao. On the spaces \({L}^{p(x)}(\Omega )\) and \({W}^{m,p(x)}(\Omega )\). J. Math. Anal. Appl., 263(2):424–446, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  34. X. Fan, Y. Zhao, and D. Zhao. Compact imbedding theorems with symmetry of Strauss-Lions type for the space \({W}^{1,p(x)}(\Omega )\). J. Math. Anal. Appl., 255(1):333–348, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Fiorenza. A mean continuity type result for certain Sobolev spaces with variable exponent. Commun. Contemp. Math., 4(3):587–605, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  36. A. Fiorenza and J. M. Rakotoson. Relative rearrangement and lebesgue spaces L p(⋅) with variable exponent. J. Math. Pures Appl. (9), 88(6):506–521, 2007.

    Google Scholar 

  37. B. Franchi, C. Pérez, and R. L. Wheeden. Sharp geometric Poincaré inequalities for vector fields and non-doubling measures. Proc. London Math. Soc. (3), 80(3):665–689, 2000.

    Google Scholar 

  38. S. Fröschl. Fortsetzungen in Lebesgue und Sobolevräumen mit variablen Exponenten. Master’s thesis, University of Freiburg, Germany, 2007.

    Google Scholar 

  39. T. Futamura and Y. Mizuta. Continuity properties of Riesz potentials for functions in L p(⋅) of variable exponent. Math. Inequal. Appl., 8(4):619–631, 2005.

    MathSciNet  MATH  Google Scholar 

  40. T. Futamura, Y. Mizuta, and T. Shimomura. Sobolev embeddings for Riesz potential space of variable exponent. Math. Nachr., 279(13–14):1463–1473, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  41. J. Gao, P. Zhao, and Y. Zhang. Compact Sobolev embedding theorems involving symmetry and its application. NoDEA Nonlinear Differential Equations Appl., 17(2):161–180, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Giannetti. The modular interpolation inequality in Sobolev spaces with variable exponent attaining the value 1. Math. Inequal. Appl., to appear, 2011.

    Google Scholar 

  43. D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Classics in Mathematics. Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition.

    Google Scholar 

  44. P. Harjulehto. Variable exponent Sobolev spaces with zero boundary values. Math. Bohem., 132(2):125–136, 2007.

    MathSciNet  MATH  Google Scholar 

  45. P. Harjulehto and P. Hästö. An overview of variable exponent Lebesgue and Sobolev spaces. In Future trends in geometric function theory, volume 92 of Rep. Univ. Jyväskylä Dep. Math. Stat., pages 85–93. Univ. Jyväskylä, Jyväskylä, 2003.

    Google Scholar 

  46. P. Harjulehto and P. Hästö. A capacity approach to the Poincaré inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Complut., 17(1):129–146, 2004.

    MathSciNet  MATH  Google Scholar 

  47. P. Harjulehto and P. Hästö. Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn. Math., 29(2):295–306, 2004.

    MathSciNet  MATH  Google Scholar 

  48. P. Harjulehto and P. Hästö. Sobolev inequalities with variable exponent attaining the values 1 and n. Publ. Mat., 52(2):347–363, 2008.

    Google Scholar 

  49. P. Harjulehto, P. Hästö, M. Koskenoja, and S. Varonen. Sobolev capacity on the space \({W}^{1,p(\cdot )}({\mathbb{R}}^{n})\). J. Funct. Spaces Appl., 1(1):17–33, 2003.

    Article  MathSciNet  MATH  Google Scholar 

  50. D. D. Haroske and H. Triebel. Distributions, Sobolev Spaces, Elliptic Equations. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich, 2008.

    MATH  Google Scholar 

  51. P. Hästö. Counter-examples of regularity in variable exponent Sobolev spaces. In The p-harmonic equation and recent advances in analysis, volume 370 of Contemp. Math., pages 133–143. Amer. Math. Soc., Providence, RI, 2005.

    Google Scholar 

  52. P. Hästö. On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam., 23(1):213–234, 2007.

    Article  MathSciNet  MATH  Google Scholar 

  53. P. Hästö. Local-to-global results in variable exponent spaces. Math. Res. Letters, 16(2):263–278, 2009.

    MATH  Google Scholar 

  54. H. Hudzik. A generalization of Sobolev spaces. I. Funct. Approximatio Comment. Math., 2:67–73, 1976.

    Google Scholar 

  55. H. Hudzik. The problems of separability, duality, reflexivity and of comparison for generalized Orlicz-Sobolev spaces \({W}^{k})_{M}(\Omega )\). Comment. Math. Prace Mat., 21(2):315–324, 1980.

    MathSciNet  Google Scholar 

  56. N. K. Karapetyants and A. I. Ginzburg. Fractional integrals and singular integrals in the Hölder classes of variable order. Integral Transform. Spec. Funct., 2(2):91–106, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  57. N. K. Karapetyants and A. I. Ginzburg. Fractional integrodifferentiation in Hölder classes of arbitrary order. Georgian Math. J., 2(2):141–150, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  58. T. Kopaliani and G. Chelidze. Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl., 356(1):232–236, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  59. O. Kováčik and J. Rákosník. On spaces L p(x) and W k, p(x). Czechoslovak Math. J., 41(116)(4):592–618, 1991.

    Google Scholar 

  60. K. Kurata and N. Shioji. Compact embedding from \(W_{0}^{1,2}(\Omega )\) to \({L}^{q(x)}(\Omega )\) and its application to nonlinear elliptic boundary value problem with variable critical exponent. J. Math. Anal. Appl., 339(2):1386–1394, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  61. G. Leoni. A First Course in Sobolev Spaces, volume 105 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2009.

    MATH  Google Scholar 

  62. Q. Liu. Compact trace in weighted variable exponent Sobolev spaces \({W}^{1,p(x)}(\Omega ;v_{0},v_{1})\). J. Math. Anal. Appl., 348(2):760–774, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  63. R. L. Long and F. S. Nie. Weighted Sobolev inequality and eigenvalue estimates of Schrödinger operators. In Harmonic analysis (Tianjin, 1988), volume 1494 of Lecture Notes in Math., pages 131–141. Springer, Berlin, 1991.

    Google Scholar 

  64. R. A. Mashiyev and B. Çekiç. Sobolev-type inequality for spaces \({L}^{p(x)}({\mathbb{R}}^{N})\). Int. J. Contemp. Math. Sci., 2(9–12):423–429, 2007.

    MathSciNet  MATH  Google Scholar 

  65. V. G. Maz’ja. Sobolev Spaces. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.

    Google Scholar 

  66. A. Mercaldo, J. D. Rossi, S. Segura de León, and C. Trombetti. On the behaviour of solutions to the Dirichlet problem for the p(x)-Laplacian when p(x) goes to 1 in a subdomain. Differential Integral Equations, 25(1–2):53–74, 2012.

    MathSciNet  MATH  Google Scholar 

  67. Y. Mizuta, T. Ohno, T. Shimomura, and N. Shioji. Compact embeddings for Sobolev spaces of variable exponents and existence of solutions for nonlinear elliptic problems involving the p(x)-Laplacian and its critical exponent. Ann. Acad. Sci. Fenn. Math., 35(1):115–130, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  68. Y. Mizuta and T. Shimomura. Sobolev’s inequality for Riesz potentials with variable exponent satisfying a log-Hölder condition at infinity. J. Math. Anal. Appl., 311(1):268–288, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Nuortio. Parabolic nonlinear PDE with nonstandard growth: supersolutions and superparabolic functions. PhD thesis, University of Oulu, Finland, 2011.

    Google Scholar 

  70. T. Ohno. Compact embeddings in the generalized Sobolev space \(W_{0}^{1,p(\cdot )}(G)\) and existence of solutions for nonlinear elliptic problems. Nonlinear Anal., 71(5–6):1534–1541, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  71. J. M. Rakotoson. Lipschitz properties in variable exponent problems via relative rearrangement. Chin. Ann. Math., 31B(6):991–1006, 2010.

    Article  MathSciNet  Google Scholar 

  72. B. Ross and S. Samko. Fractional integration operator of variable order in the Hölder spaces H λ(x). Internat. J. Math. Math. Sci., 18(4):777–788, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  73. S. Samko. Density \(C_{0}^{\infty }({\mathbf{R}}^{n})\) in the generalized Sobolev spaces \({W}^{m,p(x)}({\mathbf{R}}^{n})\). Dokl. Akad. Nauk, 369(4):451–454, 1999.

    MathSciNet  Google Scholar 

  74. S. Samko. Denseness of \(C_{0}^{\infty }({\mathbf{R}}^{N})\) in the generalized Sobolev spaces \({W}^{M,P(X)}({\mathbf{R}}^{N})\). In Direct and inverse problems of mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333–342. Kluwer Acad. Publ., Dordrecht, 2000.

    Google Scholar 

  75. L. Tartar. An Introduction to Sobolev Spaces and Interpolation Spaces, volume 3 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin, 2007.

    MATH  Google Scholar 

  76. J. Yao and X. Wang. Compact imbeddings between variable exponent spaces with unbounded underlying domain. Nonlinear Anal., 70(10):3472–3482, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  77. A. Zang and Y. Fu. Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces. Nonlinear Anal., 69(10):3629–3636, 2008.

    Article  MathSciNet  MATH  Google Scholar 

  78. V. V. Zhikov. Averaging of functionals of the calculus of variations and elasticity theory. Izv. Akad. Nauk SSSR Ser. Mat., 50(4):675–710, 877, 1986.

    Google Scholar 

  79. V. V. Zhikov. Passage to the limit in nonlinear variational problems. Mat. Sb., 183(8):47–84, 1992.

    MATH  Google Scholar 

  80. V. V. Zhikov. On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67–81, 226, 2004.

    Google Scholar 

  81. W. P. Ziemer. Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Basel

About this chapter

Cite this chapter

Cruz-Uribe, D.V., Fiorenza, A. (2013). Basic Properties of Variable Sobolev Spaces. In: Variable Lebesgue Spaces. Applied and Numerical Harmonic Analysis. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-0548-3_6

Download citation

Publish with us

Policies and ethics