Skip to main content

On Conserved Penrose-Fife Type Models

  • Chapter
  • First Online:

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 80))

Abstract

In this paper we investigate quasilinear parabolic systems of conserved Penrose-Fife type. We show maximal L p -regularity for this problem with inhomogeneous boundary data. Furthermore we prove global existence of a solution, under the assumption that the absolute temperature is bounded from below and above. Moreover, we apply the Lojasiewicz-Simon inequality to establish the convergence of solutions to a steady state as time tends to infinity.

Mathematics Subject Classification (2000). 35K55, 35B38, 35B40, 35B65, 82C26.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Abels and M. Wilke. Convergence to equilibrium for the Cahn-Hilliard equation with a logarithmic free energy. Nonlinear Anal., 67(11):3176–3193, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  2. H.W. Alt and I. Pawłow. Dynamics of nonisothermal phase separation. In Free boundary value problems (Oberwolfach, 1989), volume 95 of Internat. Ser. Numer. Math., pages 1–26. Birkhäuser, Basel, 1990.

    Google Scholar 

  3. H. Amann. Linear and quasilinear parabolic problems. Vol. I, volume 89 of Monographs in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1995. Abstract linear theory.

    Google Scholar 

  4. M. Brokate and J. Sprekels. Hysteresis and phase transitions, volume 121 of Applied Mathematical Sciences. Springer-Verlag, New York, 1996.

    Google Scholar 

  5. R. Chill. On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal., 201(2):572–601, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  6. R. Denk, M. Hieber, and J. Prüss. Optimal Lp-Lq-estimates for parabolic boundary value problems with inhomogeneous data. Math. Z., 257(1):193–224, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  7. E. DiBenedetto. Degenerate parabolic equations. Universitext. Springer-Verlag, New York, 1993.

    MATH  Google Scholar 

  8. E. Feireisl and G. Schimperna. Large time behaviour of solutions to Penrose-Fife phase change models. Math. Methods Appl. Sci., 28(17):2117–2132, 2005.

    Article  MATH  MathSciNet  Google Scholar 

  9. W. Horn, J. Sprekels, and S. Zheng. Global existence of smooth solutions to the Penrose-Fife model for Ising ferromagnets. Adv. Math. Sci. Appl., 6(1):227–241, 1996.

    MATH  MathSciNet  Google Scholar 

  10. M. Kubo, A. Ito, and N. Kenmochi. Well-posedness and attractors of phase transition models with constraint. In Proceedings of the Third World Congress of Nonlinear Analysts, Part 5 (Catania, 2000), volume 47, pages 3207–3214, 2001.

    Google Scholar 

  11. Ph. Laurençcot. Solutions to a Penrose-Fife model of phase-field type. J. Math. Anal. Appl., 185(2):262–274, 1994.

    Article  MathSciNet  Google Scholar 

  12. G.M. Lieberman. Second order parabolic differential equations. World Scientific Publishing Co. Inc., River Edge, NJ, 1996.

    MATH  Google Scholar 

  13. J. Prüss and M. Wilke. Maximal Lp-regularity and long-time behaviour of the nonisothermal Cahn-Hilliard equation with dynamic boundary conditions. Oper. Theory Adv. Appl., 168:209–236, 2006.

    Article  Google Scholar 

  14. E. Rocca and G. Schimperna. The conserved Penrose-Fife system with Fourier heat flux law. Nonlinear Anal., 53(7–8):1089–1100, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  15. Th. Runst and W. Sickel. Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial differential equations, volume 3 of de Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, 1996.

    Book  Google Scholar 

  16. G. Schimperna. Global and exponential attractors for the Penrose-Fife system. Math. Models Methods Appl. Sci., 19(6):969–991, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Shen and S. Zheng. Maximal attractors for the phase-field equations of Penrose-Fife type. Appl. Math. Lett., 15(8):1019–1023, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  18. J. Sprekels and S. Zheng. Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J. Math. Anal. Appl., 176(1):200–223, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  19. R. Zacher. Quasilinear parabolic problems with nonlinear boundary conditions. PhD thesis, Martin-Luther-Universität Halle-Wittenberg, 2003. http://sundoc.bibliothek.uni-halle.de/diss-online/03/03H058/prom.pdf.

  20. S. Zheng. Global existence for a thermodynamically consistent model of phase field type. Differential Integral Equations, 5(2):241–253, 1992.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Wilke .

Editor information

Editors and Affiliations

Additional information

Dedicated to Herbert Amann on the occasion of his 70th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Basel AG

About this chapter

Cite this chapter

Prüss, J., Wilke, M. (2011). On Conserved Penrose-Fife Type Models. In: Escher, J., et al. Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications, vol 80. Springer, Basel. https://doi.org/10.1007/978-3-0348-0075-4_27

Download citation

Publish with us

Policies and ethics