Skip to main content

Experimental Identification of a Car Dynamic Model Using the Numerical Algorithms for Subspace State-Space System Identification

  • Conference paper
  • First Online:
  • 780 Accesses

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In this paper, a system identification numerical procedure is used to perform an experimental work based on the System Identification Toolbox available in MATLAB. This work aims to show the possibility of identifying a mathematical model of a car using low-cost sensors. The instrumentation used to reach this goal is composed of an Arduino Mega2560, a GPS receiver module, and an inertial measurement unit. The Arduino is used to handle the sensors and to save the measured data. The inertial platform is used to get the linear acceleration and angular rates of the system, while the GPS is used to get the trajectory of the car. By employing the N4SID algorithm, a discrete state-space model of the system can be identified and used to predict the behavior of the car system. It is also possible to obtain a continuous model from the discrete one and to identify the natural frequencies and the system damping factors. The results show the possibility to easily identify a mathematical model of a complex system using a limited set of experimental data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6(3), 36 (2018)

    Article  Google Scholar 

  2. Zhang, Y., Li, Z., Gao, J., Hong, J., Villecco, F., Li, Y.: A method for designing assembly tolerance networks of mechanical assemblies. Math. Probl. Eng. 2012, 26 (2012)

    Google Scholar 

  3. Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)

    Article  Google Scholar 

  4. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)

    Article  Google Scholar 

  5. De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)

    Article  Google Scholar 

  6. Formato, A., Ianniello, D., Romano, R., Pellegrino, A., Villecco, F.: Design and development of a new press for grape marc. Machines 7(3), 51 (2019)

    Article  Google Scholar 

  7. Formato, G., Romano, R., Formato, A., Sorvari, J., Koiranen, T., Pellegrino, A., Villecco, F.: Fluid-structure interaction modeling applied to peristaltic pump flow simulations. Machines 7(3), 50 (2019)

    Article  Google Scholar 

  8. Formato, A., Ianniello, D., Pellegrino, A., Villecco, F.: Vibration-based experimental identification of the elastic moduli using plate specimens of the olive tree. Machines 7(2), 46 (2019)

    Article  Google Scholar 

  9. Naviglio, D., Formato, A., Scaglione, G., Montesano, D., Pellegrino, A., Villecco, F., Gallo, M.: Study of the grape cryo-maceration process at different temperatures. Foods 7(7), 107 (2018)

    Article  Google Scholar 

  10. Ghomshei, M., Villecco, F.: Energy metrics and Sustainability. In: International Conference on Computational Science and Its Applications, vol. 5592, pp. 693–698. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  11. Cattani, C., Mercorelli, P., Villecco, F., Harbusch, K.: A theoretical multiscale analysis of electrical field for fuel cells stack structures. In: International Conference on Computational Science and Its Applications, vol. 3980, pp. 857–864. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  12. Sena, P., Attianese, P., Carbone, F., Pellegrino, A., Pinto, A., Villecco, F.: A fuzzy model to interpret data of drive performances from patients with sleep deprivation. Comput. Math. Methods Med. 2012, 868410 (2012)

    Article  Google Scholar 

  13. Shabana, A.A.: Dynamics of Multibody Systems, 4th edn. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  14. Nikravesh, P.E.: Computer-Aided Analysis Of Mechanical Systems. Prentice-Hall Inc, Upper Saddle River (1988)

    Google Scholar 

  15. Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)

    Article  Google Scholar 

  16. Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019)

    Article  Google Scholar 

  17. Guida, R., De Simone, M.C., Dašić, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. IOP Conf. Ser.: Mater. Sci. Eng. 568(1), 12115 (2019)

    Article  Google Scholar 

  18. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 230(4), 307–328 (2016)

    Google Scholar 

  19. Pappalardo, C.M., Patel, M., Tinsley, B., Shabana, A.A.: Pantograph/catenary contact force control. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2015)

    Google Scholar 

  20. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vib. Acoust. 139(1), 011010 (2017)

    Article  Google Scholar 

  21. Patel, M.D., Pappalardo, C.M., Wang, G., Shabana, A.A.: Integration of geometry and small and large deformation analysis for vehicle modelling: chassis, and airless and pneumatic tyre flexibility. Int. J. Veh. Perform. 5(1), 90–127 (2019)

    Article  Google Scholar 

  22. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cossalter, V., Lot, R., Massaro, M.: An advanced multibody code for handling and stability analysis of motorcycles. Meccanica 46(5), 943–958 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)

    Article  Google Scholar 

  25. Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parameterized plate finite element. J. Comput. Nonlinear Dyn. 12(3), 031008 (2017)

    Article  Google Scholar 

  28. Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11(5), 051009 (2016)

    Article  Google Scholar 

  29. Ljung, L.: System Identification Theory for the user, 2nd edn. PTR Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  30. Juang, J., Phan, M.: Identification and Control of Mechanical Systems. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  31. Van Overschee, P., De Moor, B.: Subspace Identification for Linear Systems: Theory—Implementation—Applications. Springer, Berlin (2012)

    MATH  Google Scholar 

  32. Katayama, T.: Subspace Methods for System Identification – A Realization Approach. Springer, Berlin (2006)

    Google Scholar 

  33. Chu, J., Yuan, L., Hu, Y., Pan, C., Pan, L.: Comparative analysis of identification methods for mechanical dynamics of large-scale wind turbine. Energies 12(18), 3429 (2019)

    Article  Google Scholar 

  34. Favoreel, W., De Moor, B., Van Overschee, P.: Subspace state space system identification for industrial processes. J. Process Control 10(2–3), 149–155 (2000)

    Article  Google Scholar 

  35. Van Overschee, P., De Moor, B.: N4SID: subspace algorithms for the stochastic systems. Automatica 30(1), 75–93 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  36. Astroza, R., Hernandez, F., Dìaz, P., Gutierrez, G.: System identification of a five-story building using seismic strong-motion data. In: Dynamics of Civil Structures, vol. 2, pp. 181–189. Springer (2020)

    Google Scholar 

  37. García-Illescas, M.Á., Murià-Vila, D., Alvarez-Icaza, L.: Monitoring and identification of vibration frequencies on a portion of México City Metro Line 12. Adv. Civil Eng. 2019, 4128320 (2019)

    Article  Google Scholar 

  38. Nord, T.S., Petersen, Ø.W., Hendrikse, H.: Stochastic subspace identification of modal parameters during ice–structure interaction. Philos. Trans. R. Soc. A 377(2155), 20190030 (2019)

    Article  MathSciNet  Google Scholar 

  39. Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. In: Karabegović, I. (ed.) New Technologies, Development and Application II. NT 2019. LNNS, vol 76, pp. 59–72. Springer, Cham (2019)

    Google Scholar 

  40. De Simone, M.C., Guida, D.: Identification and control of an unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D. 80, 141–154 (2018)

    Google Scholar 

  41. Sharifzadeh, M., Pisaturo, M., Senatore, A.: Real-time identification of dry-clutch frictional torque in automated transmissions at launch condition. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. (2019). https://doi.org/10.1177/0954407019857268

  42. De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46(4), 443–452 (2018)

    Article  Google Scholar 

  43. De Simone, M.C., Rivera, Z., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)

    Article  Google Scholar 

  44. Quatrano, A., De, S., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 565–571 (2017)

    Article  Google Scholar 

  45. Jiang, Y., Xue, N., Lu, S., Song, X.: Vibration suppression of a cantilevered piezoelectric laminated composite plate subjected to hygrothermal loads. IOP Conf. Ser.: Mater. Sci. Eng. 531(1), 012035 (2019)

    Article  Google Scholar 

  46. Hu, Y.C., Chen, P.J., Chang, P.Z.: Thermal-feature system identification for a machine tool spindle. Sensors 19(5), 1209 (2019)

    Article  Google Scholar 

  47. Costa, A.G., Maldonado, J.L.B., Romero, F.A., Sanmartín, J.C., Valarezo, M., Castillo, H.: N4SID method applied to obtain a discrete-time linear state space system as a mathematical model of a jaw crusher prototype. In: 2017 CHILEAN Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), pp. 1–6 (2017)

    Google Scholar 

  48. Ni, Z., Liu, J., Wu, Z., Shen, X.: Identification of the state-space model and payload mass parameter of a flexible space manipulator using a recursive subspace tracking method. Chin. J. Aeronaut. 32(2), 513–530 (2019)

    Article  Google Scholar 

  49. Liu, X., Yang, X., Zhu, P., Xiong, W.: Robust identification of nonlinear time-delay system in state-space form. J. Franklin Inst. 356(16), 9953–9971 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  50. Holcomb, C., De Callafon, R.: Subspace identification for disturbance rejection control design in gas turbines. In: 2015 European Control Conference ECC, pp. 842–847. IEEE, Linz (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Maria Pappalardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lettieri, A., Pappalardo, C.M. (2020). Experimental Identification of a Car Dynamic Model Using the Numerical Algorithms for Subspace State-Space System Identification. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50491-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50491-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50490-8

  • Online ISBN: 978-3-030-50491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics