Skip to main content

Synthesis, Properties, and Applications of II–VI Semiconductor Core/Shell Quantum Dots

  • Chapter
  • First Online:
Core/Shell Quantum Dots

Part of the book series: Lecture Notes in Nanoscale Science and Technology ((LNNST,volume 28))

Abstract

Semiconductor core/shell quantum dots (QDs) are composed of at least two semiconducting materials having a structure like an onion. In the recent past, the synthesis of these systems impelled significant progress, as by growing an epitaxial shell, we can easily tune basic optical properties such as fluorescence quantum yield, emission wavelength, and carrier lifetime. The significance of developing an epitaxial shell over the surface of core QDs is making the nanocrystal less sensitive to environmental changes and photo-oxidation. Another advantage is the enhancement of fluorescence quantum yield by passivating surface trap states of core QDs. These properties are essential for the application of semiconductor core/shell QDs in light-emitting diodes, solar cell, and biological labelling. This chapter discusses the synthesis and microstructural and optical properties of mostly II–VI semiconductor, core/shell QDs. Moreover, various applications of core/shell QDs in solar cells, light-emitting diode, and biomedical have been also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henglein, A.: Small-particle research physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89, 1861–1873 (1989)

    Google Scholar 

  2. Trindade, T., O’Brien, P., Pickett, N.L.: Nanocrystalline semiconductors: synthesis, properties, and perspectives. Chem. Mater. 13, 3843–3858 (2001)

    Google Scholar 

  3. Kuchibhatla, S., Karakoti, A.S., Bera, D., Seal, S.: One dimensional nanostructured materials. Prog. Mater. Sci. 52, 699–913 (2007)

    Google Scholar 

  4. Bera, D., Kuiry, S.C., Seal, S.: Synthesis of nanostructured materials using template-assisted electrodeposition. JOM. 56, 49–53 (2004)

    ADS  Google Scholar 

  5. Alivisatos, A.P.: Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys.Chem. 100, 13226–13239 (1996)

    Google Scholar 

  6. Bera, D., Qian, L., Holloway, P.H.: Phosphor quantum dots. Wiley, West Sussex (2008)

    Google Scholar 

  7. Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010)

    Google Scholar 

  8. Yoffe, A.D.: Low-dimensional systemsquantum-size effects and electronic-properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-2-dimensional systems. Adv. Phys. 42, 173–266 (1993)

    ADS  Google Scholar 

  9. Yoffe, A.D.: Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems. Adv. Phys. 50, 1–208 (2001)

    ADS  Google Scholar 

  10. Wang, Y., Herron, N.: Nanometer-sized semiconductor clusters–materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991)

    Google Scholar 

  11. Bang, J., Yang, H., Holloway, P.H.: Enhanced and stable green emission of ZnO nanoparticles by surface segregation of Mg. Nanotechnology. 17, 973–978 (2006)

    ADS  Google Scholar 

  12. Kucur, E., Bucking, W., Giernoth, R., Nann, T.: Determination of defect states in semiconductor nanocrystals by cyclic voltammetry. J. Phys. Chem. B. 109, 20355–20360 (2005)

    Google Scholar 

  13. Bera, D., Qian, L., Tseng, T.K., Holloway, P.H.: Quantum dots and their multimodal applications: a review. Mater. (Basel). 3, 2260–2345 (2010)

    ADS  Google Scholar 

  14. Colvin, V.L., Goldstein, A.N., Alivisatos, A.P.: Semiconductor nanocrystals covalently bound to metal-surfaces with self-assembled monolayers. J. Am. Chem. Soc. 114, 5221–5230 (1992)

    Google Scholar 

  15. Dabbousi, B.O., Murray, C.B., Rubner, M.F., Bawendi, M.G.: Langmuir-Blodgett manipulation of size-selected CdSe nanocrystallites. Chem. Mater. 6, 216–219 (1994)

    Google Scholar 

  16. Murray, C.B., Kagan, C.R., Bawendi, M.G.: Self-organization of CdSe nanocrystallites into 3-dimensional quantum-dot superlattices. Science. 270, 1335–1338 (1995)

    ADS  Google Scholar 

  17. Wang, Q., Kuo, Y.C., Wang, Y.W., Shin, G., Ruengruglikit, C., Huang, Q.R.: Luminescent properties of water-soluble denatured bovine serum albumin-coated CdTe quantum dots. J. Phys. Chem. B. 110, 16860–16866 (2006)

    Google Scholar 

  18. Ma, N., Yang, J., Stewart, K.M., Kelley, S.O.: DNA-passivated CdS nanocrystals: luminescence, bioimaging, and toxicity profiles. Langmuir. 23, 12783–12787 (2007)

    Google Scholar 

  19. Reiss, P., Protiere, M., Li, L.: Core/Shell semiconductor nanocrystals. Small. 5, 154–168 (2009)

    Google Scholar 

  20. Chen, X.B., Lou, Y.B., Samia, A.C., Burda, C.: Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Lett. 3, 799–803 (2003)

    ADS  Google Scholar 

  21. Zhou, Y., Zhao, H., Ma, D., Rosei, F.: Harnessing the properties of colloidal quantum dots in luminescent solar concentrators. Chem. Soc. Rev. 47, 5866–5890 (2018)

    Google Scholar 

  22. Farkhani, S.M., Valizadeh, A.: Review: three synthesis methods of CdX (X = Se, S or Te) quantum dots. IET Nanobiotechnol. 8, 59–76 (2014)

    Google Scholar 

  23. Murray, C.B., Kagan, C.R., Bawendi, M.G.: Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 30, 545–610 (2000)

    ADS  Google Scholar 

  24. Peng, X.: Band gap and composition engineering on a nanocrystal (BCEN) in solution. Acc. Chem. Res. 43, 1387–1395 (2010)

    Google Scholar 

  25. Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly Monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor Nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Google Scholar 

  26. Peng, Z.A., Peng, X.: Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 123, 183–184 (2001)

    Google Scholar 

  27. Qu, L.H., Peng, Z.A., Peng, X.: Alternative routes toward high-quality CdSe nanocrystals. Nano Lett. 1, 333–337 (2001)

    ADS  Google Scholar 

  28. Peng, X.: Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 8, 334–339 (2002)

    Google Scholar 

  29. Ghorpade, U., Suryawanshi, M., Shin, S.W., Gurav, K., Patil, P., Pawar, S., Hong, C.W., Kim, J.H., Kolekar, S.: Towards environmentally benign approaches for the synthesis of CZTSSe nanocrystals by a hot injection method: a status review. Chem. Commun. 50, 11258–11273 (2014)

    Google Scholar 

  30. Yu, W.W., Peng, X.: Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41, 2368–2371 (2002)

    ADS  Google Scholar 

  31. Bullen, C.R., Mulvaney, P.: Nucleation and growth kinetics of CdSe nanocrystals in Octadecene. Nano Lett. 4, 2303–2307 (2004)

    ADS  Google Scholar 

  32. Abe, S., Capek, R.K., De Geyter, B., Hens, Z.: Reaction chemistry/nanocrystal property relations in the hot injection synthesis, the role of the solute solubility. ACS Nano. 7, 943–949 (2013)

    Google Scholar 

  33. Deng, Z., Cao, L., Tang, F., Zou, B.: A new route to zinc-blende CdSe nanocrystals: mechanism and synthesis. J. Phys. Chem. B. 109, 16671–16675 (2005)

    Google Scholar 

  34. Cao, Y.C., Wang, J.: One-pot synthesis of high-quality zinc-blende CdS nanocrystals. J. Am. Chem. Soc. 126, 14336–14337 (2004)

    Google Scholar 

  35. Protière, M., Nerambourg, N., Renard, O., Reiss, P.: Rational design of the gram-scale synthesis of nearly monodisperse semiconductor nanocrystals. Nanoscale Res. Lett. 6, 472 (2011)

    ADS  Google Scholar 

  36. Qian, H., Qiu, X., Li, L., Ren, J.: Microwave-assisted aqueous synthesis: a rapid approach to prepare highly luminescent ZnSe(S) alloyed quantum dots. J. Phys. Chem. B. 110, 9034–9040 (2006)

    Google Scholar 

  37. Pradhan, N., Efrima, S.: Single-precursor, one-pot versatile synthesis under near ambient conditions of Tunable, single and dual band fluorescing metal Sulfide nanoparticles. J. Am. Chem. Soc. 125, 2050–2051 (2003)

    Google Scholar 

  38. Cumberland, S.L., Hanif, K.M., Javier, A., Khitrov, G.A., Strouse, G.F., Woessner, S.M., Yun, C.S.: Inorganic clusters as single-source precursors for preparation of CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem. Mater. 14, 1576–1584 (2002)

    Google Scholar 

  39. Smith, A.M., Mohs, A.M., Nie, S.: Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009)

    ADS  Google Scholar 

  40. Li, J.J., Wang, Y.A., Guo, W.Z., Keay, J.C., Mishima, T.D., Johnson, M.B., Peng, X.G.: Large-scale synthesis of nearly Monodisperse CdSe/CdS Core/Shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 125, 12567–12575 (2003)

    Google Scholar 

  41. Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)

    Google Scholar 

  42. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G.: (CdSe)ZnS Core−Shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 101, 9463–9475 (1997)

    Google Scholar 

  43. Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M., Weller, H.: Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in hexadecylamine -trioctylphosphine oxide−trioctylphosphine mixture. Nano Lett. 1, 207–211 (2001)

    ADS  Google Scholar 

  44. Kudera, S., Zanella, M., Giannini, C., Rizzo, A., Li, Y.Q., Gigli, G., Cingolani, R., Ciccarella, G., Spahl, W., Parak, W.J., Manna, L.: Sequential growth of magic-size CdSe nanocrystals. Adv. Mater. 19, 548–551 (2007)

    Google Scholar 

  45. Jun, S., Jang, E.: Interfused semiconductor nanocrystals: brilliant blue photoluminescence and electroluminescence. Chem. Commun. 36, 4616–4618 (2005)

    Google Scholar 

  46. Hao, J.J., Zhoua, J., Zhang, C.Y.: A tri-n-octylphosphine-assisted successive ionic layer adsorption and reaction method to synthesize multilayered core–shell CdSe–ZnS quantum dots with extremely high quantum yield. Chem. Commun. 49, 6346–6348 (2013)

    Google Scholar 

  47. Peng, X.G., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997)

    Google Scholar 

  48. Chen, Y., Vela, J., Htoon, H., Casson, J.L., Werder, D.J., Bussian, D.A., Klimov, V.I., Hollingsworth, J.A.: “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008)

    Google Scholar 

  49. Christodoulou, S., Vaccaro, G., Pinchetti, V., Donato, F.D., Grim, J.Q., Casu, A., Genovese, A., Vicidomini, G., Diaspro, A., Brovelli, S., Mannaa, L., Moreels, I.: Synthesis of highly luminescent wurtzite CdSe/CdS giant-shell nanocrystals using a fast continuous injection route. J. Mater. Chem. C. 2, 3439–3447 (2014)

    Google Scholar 

  50. Chen, O., Zhao, J., Chauhan, V.P., Cui, J., Wong, C., Harris, D.K., Wei, H., Han, H.S., Fukumura, D., Jain, R.K., Bawendi, M.G.: Compact high-quality CdSe–CdS core–shell nanocrystals with narrow emission linewidths and suppressed blinking. Nature Mater. 12, 445–451 (2013)

    ADS  Google Scholar 

  51. Danek, M., Jensen, K.F., Murray, C.B., Bawendi, M.G.: Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe. Chem. Mater. 8, 173–180 (1996)

    Google Scholar 

  52. Reiss, P., Bleuse, J., Pron, A.: Highly luminescent CdSe/ZnSe Core/Shell nanocrystals of low size dispersion. Nano Lett. 2, 781–784 (2002)

    ADS  Google Scholar 

  53. Reiss, P., Carayon, S., Bleuse, J.: Large fluorescence quantum yield and low size dispersion from CdSe/ZnSe core/shell nanocrystals. Phys. E. 17, 95–96 (2003)

    Google Scholar 

  54. Lee, Y.J., Kim, T.G., Sung, Y.M.: Lattice distortion and luminescence of CdSe/ZnSe nanocrystals. Nanotechnology. 17, 3539–3542 (2006)

    ADS  Google Scholar 

  55. Steckel, J.S., Snee, P., Coe-Sullivan, S., Zimmer, J.R., Halpert, J.E., Anikeeva, P., Kim, L.A., Bulovic, V., Bawendi, M.G.: Color-saturated green-emitting QD-LEDs. Angew. Chem. Int. Ed. 45, 5796–5799 (2006)

    Google Scholar 

  56. Protiere, M., Reiss, P.: Highly luminescent Cd1−xZnxSe/ZnS Core/Shell nanocrystals emitting in the blue–green spectral range. Small. 3, 399–403 (2007)

    Google Scholar 

  57. Shen, H., Bai, X., Wang, A., Wang, H., Qian, L., Yang, Y., Titov, A., Hyvonen, J., Zheng, Y., Li, L.S.: High-efficient deep-blue light-emitting diodes by using high quality Znx Cd1− xS/ZnS Core/Shell quantum dots. Adv. Funct. Mater. 24, 2367–2373 (2014)

    Google Scholar 

  58. Li, Z., Chen, F., Wang, L., Shen, H., Guo, L., Kuang, Y., Wang, H., Li, N., Li, L.S.: Synthesis and evaluation of ideal Core/Shell quantum dots with precisely controlled Shell growth: nonblinking, single photoluminescence Decay channel, and suppressed FRET. Chem. Mater. 30, 3668–3676 (2018)

    Google Scholar 

  59. Spanhel, L., Haase, M., Weller, H., Henglein, A.: Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 109, 5649–5655 (1987)

    Google Scholar 

  60. Steckel, J.S., Zimmer, J.P., Coe-Sullivan, S., Stott, N.E., Bulovic, V., Bawendi, M.G.: Blue luminescence from (CdS)ZnS Core–Shell nanocrystals. Angew. Chem. Int. Ed. 43, 2154–2158 (2004)

    Google Scholar 

  61. Protiere, M., Reiss, P.: Facile synthesis of monodisperse ZnS capped CdS nanocrystals exhibiting efficient blue emission. Nanoscale Res. Lett. 1, 62–67 (2006)

    ADS  Google Scholar 

  62. Yang, H., Holloway, P.H.: Efficient and photostable ZnS-passivated CdS:Mn luminescent nanocrystals. Adv. Funct. Mater. 14, 152–156 (2004)

    Google Scholar 

  63. Yang, Y.A., Chen, O., Angerhofer, A., Cao, Y.C.: Radial-position-controlled doping in CdS/ZnS Core/Shell nanocrystals. J. Am. Chem. Soc. 128, 12428–12429 (2006)

    Google Scholar 

  64. Hofman, E., Robinson, R.J., Li, Z.-J., Dzikovski, B., Zheng, W.: Controlled dopant migration in CdS/ZnS core/shell quantum dots. J. Am. Chem. Soc. 139(26), 8878–8885 (2017)

    Google Scholar 

  65. Chen, D., Zhao, F., Qi, H., Rutherford, M., Peng, X.: Bright and stable purple/blue emitting CdS/ZnS Core/Shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 22, 1437–1444 (2010)

    Google Scholar 

  66. Lomascolo, M., Creti, A., Leo, G., Vasanelli, L., Manna, L.: Exciton relaxation processes in colloidal core/shell ZnSe/ZnS nanocrystals. Appl. Phys. Lett. 82, 418–420 (2003)

    ADS  Google Scholar 

  67. Chen, H.S., Lo, B., Hwang, J.Y., Chang, G.Y., Chen, C.M., Tasi, S.J., Wang, S.J.J.: Colloidal ZnSe, ZnSe/ZnS, and ZnSe/ZnSeS quantum dots synthesized from ZnO. J. Phys. Chem. B. 108, 17119–17123 (2004)

    Google Scholar 

  68. Dong, B., Cao, L., Sua, G., Liu, W.: Facile synthesis of highly luminescent UV-blue emitting ZnSe/ZnS core/shell quantum dots by a two-step method. Chem. Commun. 46, 7331–7333 (2010)

    Google Scholar 

  69. Shen, H., Wang, H., Li, X., Niu, J.Z., Wang, H., Chen, X., Li, L.S.: Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals. Dalton Trans. 47, 10534–10540 (2009)

    Google Scholar 

  70. Wang, A., Shen, H., Zang, S., Lin, Q., Wang, H., Qian, L., Niu, J., Li, L.S.: Bright, efficient, and color-stable violet ZnSe-based quantum dot light-emitting diodes. Nanoscale. 7, 2951–2959 (2015)

    ADS  Google Scholar 

  71. Tsay, J.M., Pflughoefft, M., Bentolila, L.A., Weiss, S.: Hybrid approach to the synthesis of highly luminescent CdTe/ZnS and CdHgTe/ZnS nanocrystals J. Am. Chem. Soc. 126, 1926–1927 (2004)

    Google Scholar 

  72. Bao, H.B., Gong, Y.J., Li, Z., Gao, M.Y.: Enhancement effect of illumination on the photoluminescence of water-soluble CdTe nanocrystals: toward highly fluorescent CdTe/CdS Core−Shell structure. Chem. Mater. 16, 3853–3859 (2004)

    Google Scholar 

  73. He, Y., Lu, H.T., Sai, L.M., Lai, W.Y., Fan, Q.L., Wang, L.H., Huang, W.: Microwave-assisted growth and characterization of water-dispersed CdTe/CdS Core−Shell nanocrystals with high photoluminescence. J. Phys. Chem. B. 110, 13370–13374 (2006)

    Google Scholar 

  74. Wang, C.L., Zhang, H., Zhang, J.H., Li, M.J., Sun, H.Z., Yang, B.: Application of ultrasonic irradiation in aqueous synthesis of highly fluorescent CdTe/CdS Core−Shell nanocrystals. J. Phys. Chem. C. 111, 2465–2469 (2007)

    Google Scholar 

  75. Gu, Z., Zou, L., Fang, Z., Zhu, W., Zhong, X.: One-pot synthesis of highly luminescent CdTe/CdS core/shell nanocrystals in aqueous phase. Nanotechnology. 19, 135604 (2008). (pp 7)

    ADS  Google Scholar 

  76. Kim, S., Fisher, B., Eisler, H.J., Bawendi, M.: Type-II quantum dots: CdTe/CdSe(Core/Shell) and CdSe/ZnTe(Core/Shell) heterostructures. J. Am. Chem. Soc. 125, 11466–11467 (2003)

    Google Scholar 

  77. Yu, K., Zaman, B., Romanova, S., Wang, D.S., Ripmeester, J.A.: Sequential synthesis of type II colloidal CdTe/CdSe Core–Shell nanocrystals. Small. 1, 332–338 (2005)

    Google Scholar 

  78. Chin, P.T.K., Donega, C.D.M., Bavel, S.S., Meskers, S.C.J., Sommerdijk, N., Janssen, R.A.J.: Highly luminescent CdTe/CdSe colloidal Heteronanocrystals with temperature-dependent emission color. J. Am. Chem. Soc. 129, 14880–14886 (2007)

    Google Scholar 

  79. Xia, Y., Zhu, C.: Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper (II). Analyst. 133, 928–932 (2008)

    ADS  Google Scholar 

  80. Xie, R.G., Zhong, X.H., Basché, T.: Synthesis, characterization, and spectroscopy of type-II Core/Shell semiconductor nanocrystals with ZnTe Cores. Adv. Mater. 17, 2741–2744 (2005)

    Google Scholar 

  81. Xie, R.G., Kolb, U., Basché, T.: Design and synthesis of colloidal nanocrystal heterostructures with tetrapod morphology. Small. 2, 1454–1457 (2006)

    Google Scholar 

  82. Milliron, D.J., Hughes, S.M., Cui, Y., Manna, L., Li, J.B., Wang, L.W., Alivisatos, A.P.: Colloidal nanocrystal heterostructures with linear and branched topology. Nature. 430, 190–195 (2004)

    ADS  Google Scholar 

  83. Ivanov, S.A., Piryatinski, A., Nanda, J., Tretiak, S., Zavadil, K.R., Wallace, W.O., Werder, D., Klimov, V.I.: Type-II Core/Shell CdS/ZnSe nanocrystals: synthesis, electronic structures, and spectroscopic properties. J. Am. Chem. Soc. 129, 11708–11719 (2007)

    Google Scholar 

  84. Bang, J., Park, J., Lee, J.H., Won, N., Nam, J., Lim, J., Chang, B.Y., Lee, H.J., Chon, B., Shin, J., Park, J.B., Choi, J.H., Cho, K., Park, S.M., Joo, T., Kim, S.: ZnTe/ZnSe (Core/Shell) type-II quantum dots: their optical and photovoltaic properties. Chem. Mater. 22, 233–240 (2010)

    Google Scholar 

  85. Battaglia, D., Li, J.J., Wang, Y.J., Peng, X.G.: Colloidal two-dimensional systems: CdSe quantum shells and wells. Angew. Chem. Int. Ed. 42, 5035–5039 (2003)

    Google Scholar 

  86. Balet, L.P., Ivanov, S.A., Piryatinski, A., Achermann, M., Klimov, V.I.: Inverted Core/Shell nanocrystals continuously tunable between type-I and type-II localization regimes. Nano Lett. 4, 1485–1488 (2004)

    ADS  Google Scholar 

  87. Zhong, X.H., Xie, R.G., Zhang, Y., Basché, T., Knoll, W.: High-quality violet- to red-emitting ZnSe/CdSe Core/Shell nanocrystals. Chem. Mater. 17, 4038–4042 (2005)

    Google Scholar 

  88. Klimov, V.I.: Mechanisms for Photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion. J. Phys. Chem. B. 110, 16827–16845 (2006)

    Google Scholar 

  89. Kamat, P.V.: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C. 112, 18737–18753 (2008)

    Google Scholar 

  90. Pan, Z., Rao, H., Mora-Seró, I., Bisquert, J., Zhong, X.: Quantum dot-sensitized solar cells. Chem. Soc. Rev. 47, 7659–7702 (2018)

    Google Scholar 

  91. Lee, Y.-L., Lo, Y.-S.: Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv. Funct. Mater. 19, 604–609 (2009)

    Google Scholar 

  92. Sambur, J.B., Parkinson, B.A.: CdSe/ZnS Core/Shell quantum dot sensitization of low index TiO2 single crystal surfaces. J. Am. Chem. Soc. 132, 2130–2131 (2010)

    Google Scholar 

  93. Yang, J., Wang, J., Zhao, K., Izuishi, T., Li, Y., Shen, Q., Zhong, X.: CdSeTe/CdS type-I Core/Shell quantum dot sensitized solar cells with efficiency over 9%. J. Phys. Chem. C. 119, 28800–28808 (2015)

    Google Scholar 

  94. Ning, Z., Tian, H., Yuan, C., Fu, Y., Qin, H., Sun, L., Agren, H.: Solar cells sensitized with type-II ZnSe–CdS core/shell colloidal quantum dots. Chem. Commun. 47, 1536–1538 (2011)

    Google Scholar 

  95. Yu, X.-Y., Lei, B.-X., Kuang, D.-B., Su, C.-Y.: Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition. Chem. Sci. 2, 1396–1400 (2011)

    Google Scholar 

  96. Luo, J., Wei, H., Li, F., Huang, Q., Li, D., Luo, Y., Meng, Q.: Microwave assisted aqueous synthesis of core–shell CdSexTe1−x–CdS quantum dots for high performance sensitized solar cells. Chem. Commun. 50, 3464–3466 (2014)

    Google Scholar 

  97. Wang, J., Mora-Sero, I., Pan, Z., Zhao, K., Zhang, H., Feng, Y., Yang, G., Zhong, X., Bisquert, J.: Core/Shell colloidal quantum dot Exciplex states for the development of highly efficient quantum-dot-sensitized solar cells. J. Am. Chem. Soc. 135, 15913–15922 (2013)

    Google Scholar 

  98. Jiao, S., Shen, Q., Mora-Sero, I., Wang, J., Pan, Z., Zhao, K., Kuga, Y., Zhong, X., Bisquert, J.: Band engineering in Core/Shell ZnTe/CdSe for Photovoltage and efficiency enhancement in Exciplex quantum dot sensitized solar cells. ACS Nano. 9, 908–915 (2015)

    Google Scholar 

  99. Yang, J., Choi, M.K., Kim, D.-H., Hyeon, T.: Designed assembly and integration of colloidal nanocrystals for device applications. Adv. Mater. 28, 1176–1207 (2016)

    Google Scholar 

  100. Dai, X., Deng, Y., Peng, X., Jin, Y.: Quantum-dot light-emitting diodes for large area displays: towards the dawn of commercialization. Adv. Mater. 29, 1607022 (2017)

    Google Scholar 

  101. Pimputkar, S., Speck, J.S., Denbaars, S.P., Nakamura, S.: Prospects for LED lighting. Nat. Photon. 3, 180–182 (2009)

    ADS  Google Scholar 

  102. Choi, M.K., Yang, J., Hyeon, T., Kim, D.H.: Flexible quantum dot light-emitting diodes for next-generation displays. npj Flexible Electronics. 2, 10 (2018)

    ADS  Google Scholar 

  103. Bae, W.K., Char, K., Hur, H., Lee, S.: Single-step synthesis of quantum dots with chemical composition gradients. Chem. Mater. 20, 531–539 (2008)

    Google Scholar 

  104. Lee, J., Yang, J., Kwon, S.G., Hyeon, T.: Nonclassical nucleation and growth of inorganic nanoparticles. Nat. Rev. Mater. 1, 16034 (2016)

    ADS  Google Scholar 

  105. Owen, J., Brus, L.: Chemical synthesis and luminescence applications of colloidal semiconductor quantum dots. J. Am. Chem. Soc. 139, 10939–10943 (2017)

    Google Scholar 

  106. Yang, Y., Zheng, Y., Cao, W., Titov, A., Hyvonen, J., Manders, J.R., Xue, J., Holloway, P.H., Qian, L.: High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015)

    ADS  Google Scholar 

  107. Galland, C., Ghosh, Y., Steinbrück, A., Hollingsworth, J.A., Htoon, H., Klimov, V.I.: Lifetime blinking in nonblinking nanocrystal quantum dots. Nat. Commun. 3, 908 (2012)

    ADS  Google Scholar 

  108. Hao, J., Liu, H., Miao, J., Lu, R., Zhou, Z., Zhao, B., Xie, B., Cheng, J., Wang, K., Delville, M.H.: A facile route to synthesize CdSe/ZnS thick-shell quantum dots with precisely controlled green emission properties: towards QDs based LED applications. Sci. Rep. 9, 12048 (2019)

    ADS  Google Scholar 

  109. Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. 281, 2016–2018 (1998)

    ADS  Google Scholar 

  110. Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., Nie, S.: In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969 (2004)

    Google Scholar 

  111. Martynenko, I.V., Litvin, A.P., Purcell-Milton, F., Baranov, A.V., Fedorov, A.V., Gun’ko, Y.K.: Application of semiconductor quantum dots in bioimaging and biosensing. J. Mater. Chem. B. 5, 6701–6727 (2017)

    Google Scholar 

  112. Geng, L., Duan, X., Wang, Y., Zhao, Y., Gao, G., Liu, D., Chang, Y.Z., Yu, P.: Quantum dots-hemin: preparation and application in the absorption of heme iron. Nanomedicine. 12, 1747–1755 (2016)

    Google Scholar 

  113. Yang, H.Y., Fu, Y., Jang, M.S., Li, Y., Lee, J.H., Chae, H., Lee, D.S.: Multifunctional polymer ligand interface CdZnSeS/ZnS quantum dot/Cy3-labeled protein pairs as sensitive FRET sensors. ACS Appl. Mater. Interfaces. 8, 35021–35032 (2016)

    Google Scholar 

  114. Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L.: Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine. 12, 5421–5431 (2017)

    Google Scholar 

  115. Olerile, L.D., Liu, Y., Zhang, B., Wang, T., Mu, S., Zhang, J., Selotlegeng, L., Zhang, N.: Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surf. B Biointerfaces. 150, 121–130 (2017)

    Google Scholar 

  116. Zhao, T., Liu, X., Li, Y., Zhang, M., He, J., Zhang, X., Liu, H., Wang, X., Gu, H.: Fluorescence and drug loading proprieties of ZnSe:Mn/ZnS-paclitaxel/SiO2 nanocapsules templated by F127 micelles. J. Colloid Interface Sci. 490, 436–443 (2017)

    ADS  Google Scholar 

  117. Yang, X., Zhang, W., Zhao, Z., Li, N., Mou, Z., Sun, D., Cai, Y., Wang, W., Lin, Y.: Quercetin loading CdSe/ZnS nanoparticles as efficient antibacterial and anticancer materials. J. Inorg. Biochem. 167, 36–48 (2017)

    Google Scholar 

  118. Biju, V., Mundayoor, S., Omkumar, R.V., Anas, A., Ishikawa, M.: Bioconjugated quantum dots for cancer research: present status, prospects and remaining issues. Biotechnol. Adv. 28, 199–213 (2010)

    Google Scholar 

Download references

Acknowledgments

Authors thank “Science and Engineering Research Board (SERB), Government of India,” for financial assistance under the project number EEQ/2016/000652. ANY thanks UGC, New Delhi, for junior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kedar Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yadav, A.N., Singh, A.K., Singh, K. (2020). Synthesis, Properties, and Applications of II–VI Semiconductor Core/Shell Quantum Dots. In: Tong, X., M. Wang, Z. (eds) Core/Shell Quantum Dots. Lecture Notes in Nanoscale Science and Technology, vol 28. Springer, Cham. https://doi.org/10.1007/978-3-030-46596-4_1

Download citation

Publish with us

Policies and ethics