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                                     Abstract
Most of the public key encryption (PKE) schemes based on multivariate quadratic polynomials rely on Hidden Field Equation (HFE) paradigm. However, most of HFE based schemes have been broken in only several years just after their introduction. In this paper, we propose an alternative paradigm for constructing PKE based on multivariate quadratic polynomials. At the heart of our proposal is a new family of computational problems based on the generalization of Isomorphism of Polynomials with Two Secrets (IP2S) problem. The main computational problem in the new family is proven as hard as the original IP2S problem and is more robust, in the sense that we can associate it with circulant matrices as solutions without degrading its computational hardness too much, in contrast to the original IP2S problem which immediately becomes easy as soon as it is associated with circulant matrices. By associating it to circulant matrices, we obtain a Diffie-Hellman like structure which allows us to have an El-Gamal like PKE scheme.
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                             Notes
	1.For any \(a\geqq 0\), \(a \text { mod } {k}=a-\alpha \times k\), where \(\alpha \) is the largest integer such that \(\alpha \times k \leqq a\) holds, and for any \(a<0\), \(a \text { mod } {k}=\alpha \times k+a\), where \(\alpha \) is the smallest integer such that \(\alpha \times k+a>0\).
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Appendices
A General Notations Related to Complexity
Let \(\lambda \in \mathbb {N}\) be the general security parameter in this paper. Unless noted otherwise, any algorithm in this paper is probabilistic with running time polynomial in \(\lambda \). The notation \(a\leftarrow b\) denotes the assignment of value b into variable a. We say that a function \(f(\lambda )\) is negligible if for every \(\eta >0\) there exists a \(\lambda _{\eta }\) such that \(f(\lambda )<1/\lambda _{\eta }\) for all \(\lambda >\lambda _{\eta }\). An algorithm is said to solve a computational task efficiently if the probability that it solves the task within time polynomial in \(\lambda \) is not negligible. A task or a computational problem is said to be hard if there exists no algorithm solves the task/problem efficiently.
B Proof of Theorem 1
Let us be given \(\overline{\mathbf {f}},\overline{\mathbf {g}}\in \mathcal {MQ}(n,m)\) as the instance of IP2S problem defined in Definition 2. Since the lemma holds trivially when \(\mathbf {\overline{f}}=\mathbf {0}\) (zero polynomials) or \(\mathbf {\overline{g}=\mathbf {0}}\), we are left to prove the case when \(\mathbf {\overline{f}\ne \mathbf {0}}\) and \(\mathbf {\overline{g}\ne \mathbf {0}}\). Hence, from hereafter we assume that \(\mathbf {\overline{f}\ne \mathbf {0}}\) and \(\overline{\mathbf {g}}\ne \mathbf {0}\). Next, we construct \(\mathbf {f},\mathbf {g}\in \mathcal {MQ}(n,m\times k)\) as follows. Let \(\mathbf {f}_{[1]}=\mathbf {\overline{f}}\), \(\mathbf {g}_{[1]}=\mathbf {\overline{g}}\), and \(\mathbf {f}_{[\tau ]},\mathbf {g}_{[\tau ]}=\mathbf {0}\) for all \(\tau \in [2,k]\). In order to complete the proof, we show that the following claim holds.

                    Claim

                    \((\overline{\mathbf {f}},\overline{\mathbf {g}})\) is an instance of IP2S with solutions if and only if \((\mathbf {f},\mathbf {g})\) is an instance of BIP with solutions.

                  In order to prove the above claim, first, we prove the “if” part. If the pair \((\mathbf {f},\mathbf {g})\) is an instance of BIP with solution, then, there exist \(S\in \mathbb {GL}(n,k),T\in \mathbb {GL}(m,k)\) such that the following holds. 
$$\begin{aligned} \mathbf {g}_{[1]}&=T_{[1]}\circ \mathbf {\mathbf {f}}_{[1]}\circ S_{[1]},\end{aligned}$$

                    (11)
                


$$\begin{aligned} \forall \tau&\in [2,k]:\nonumber \\ \mathbf {0}&=T_{[(k-\tau +1) \text { mod } {k}+1]}\circ \mathbf {\mathbf {f}}_{[1]}\circ S_{[(k-\tau +1) \text { mod } {k}+1].} \end{aligned}$$

                    (12)
                

 It is clear that neither \(T_{[1]}\) nor \(S_{[1]}\) is a zero matrix since by the assumption, neither \(\mathbf {g}_{[1]}\) nor \(\mathbf {f}_{[1]}\) is a zero polynomial. Therefore, \(T_{[1]}\) and \(S_{[1]}\) must be invertible matrices, i.e., \(T_{[1]}\in \mathbb {GL}_{m}\), \(S_{[1]}\in \mathbb {GL}_{n}\). Hence, \(T_{[1]}\) and \(S_{[1]}\) are the solutions for IP2S problem with instance \((\overline{\mathbf {f}},\overline{\mathbf {g}})\).
Next, we prove the “only if” part. Now, we assume that \((\overline{\mathbf {f}},\overline{\mathbf {g}})\) is an instance of IP2S with solutions, but \((\mathbf {f},\mathbf {g})\) is an instance of BIP without any solution. Let \(\overline{T}\in \mathbb {GL}_{m}\) and \(\overline{S}\in \mathbb {GL}_{n}\) be the solutions of \((\overline{\mathbf {f}},\overline{\mathbf {g}})\) such that \(\overline{\mathbf {g}}=\overline{T}\circ \overline{\mathbf {f}}\circ \overline{S}\) holds. Now remind that \(\mathbf {f}_{[1]}=\mathbf {\overline{f}}\), \(\mathbf {g}_{[1]}=\mathbf {\overline{g}}\), and \(\mathbf {f}_{[\tau ]},\mathbf {g}_{[\tau ]}=\mathbf {0}\) for \(\tau \in [2,k]\) hold by our setting and it is easy to see that we can construct \(S\in \mathbb {GL}(n,k),T\in \mathbb {GL}(m,k)\) such that Eqs. (11) and (12) hold by setting \(T_{[1]}=\overline{T}\), \(S_{[1]}=\overline{S}\), and \(T_{[\tau ]}=0_{m}\), \(S_{[\tau ]}=0_{n}\) for all \(\tau \in [2,k]\). This means that \((\mathbf {f},\mathbf {g})\) is an instance of BIP with solutions and contradicts our assumption. Hence, we have proven the “only if “ part of the claim.
Finally, it should be noted that if \((\overline{\mathbf {f}},\overline{\mathbf {g}})\) is an IP2S problem instance with solution, then we can always extract the solution by using an algorithm \(\mathcal {B}\) which solves BIP and setting the input to \(\mathcal {B}\) as \(\left( \mathbf {f},\mathbf {g}\right) \) where \(\mathbf {f}_{[1]}=\mathbf {\overline{f}}\), \(\mathbf {g}_{[1]}=\mathbf {\overline{g}}\), and \(\mathbf {f}_{[\tau ]},\mathbf {g}_{[\tau ]}=\mathbf {0}\) for all \(\tau \in [2,k]\) as shown above. One can easily see that this statement holds based on the proof of the “if” part of the claim above. This ends the proof of Theorem 1.    \(\square \)
C Security Against Chosen Plaintext Attacks
Here we show that the public key encryption scheme described in Sect. 4.1 is secure against one way under chosen plaintext attack (OW-CPA).

                    Definition 12

                    (One Wayness against Chosen Plaintext Attack (OW-CPA)). Let \(\mathsf {PKE}\) be a public-key encryption scheme. Consider the following one way against chosen plaintext attack (OW-CPA) game, played between a challenger \(\mathcal {B}\) and an adversary \(\mathcal {A}\): 
	
1.

\(\mathcal {B}\) generates a public key/secret key pair, and gives the public key to \(\mathcal {A}\).



	
2.

\(\mathcal {A}\) makes encryption queries, which each is the message \(\nu \) to encryption oracle \(\mathsf {Enc}\) provided by \(\mathcal {B}\). For each encryption query, \(\mathcal {B}\) perform the encryption step using the public key and sends back a valid ciphertext \(\mathbf {c}\) to \(\mathcal {A}\).



	
3.

\(\mathcal {B}\) sends a ciphertext \(c'\) to \(\mathcal {A}\), and \(\mathcal {A}\) outputs \(\nu '\).






                    The adversary \(\mathcal {A}\) is said to win if \(\nu '\) is a valid decryption of \(c'\). \(\mathsf {PKE}\) is said to be OW-CPA secure if there is no \(\mathcal {A}\) which wins the above game efficiently.

                  
                    Theorem 3

                    If there exists an adversary \(\mathcal {A}\) wins OW-CPA game in the public key encryption scheme described in Sect. 4.1 efficiently, then there exists an algorithm \(\mathcal {B}\) which solves CDH-BIPC efficiently.

                  
                    Proof

                    We construct the algorithm \(\mathcal {B}\) using oracle access to \(\mathcal {A}\). The procedure of \(\mathcal {B}\) is as follows.

                    
                      	
                          (1)
                          
                            Given input \(\mathbf {f}^{(1)},\mathbf {f}^{(2)},\mathbf {g}^{(1)}\in \mathcal {MQ}_{[k]}(n,m)\) as the instance of CDH-BIPC, \(\mathcal {B}\) input \(\mathbf {g}^{(1)},\mathbf {f}^{(1)}\) as the public key into \(\mathcal {A}\). Since \((\mathbf {f}^{(1)},\mathbf {f}^{(2)},\mathbf {g}^{(1)})\) is an instance of CDH-BIPC, [image: ] holds for some \(\varUpsilon \in \varPsi _{[n,m,k]}\), and thus \((\mathbf {g}^{(1)},\mathbf {f}^{(1)})\) is a valid public key pair.

                          
                        
	
                          (2)
                          
                            \(\mathcal {B}\) easily simulates the encryption oracle \(\mathsf {Enc}\) using \(\mathbf {g}^{(1)},\mathbf {f}^{(1)}\) as the public key by executing the encryption procedure shown in Sect. 4.1.

                          
                        
	
                          (3)
                          
                            \(\mathcal {B}\) sets \(\mathbf {c'}_{0}=\mathbf {f}^{(2)}\) and selects randomly \(\mathbf {c}'_{1}\) from \(\mathcal {MQ}_{[k]}(n,m)\).

                          
                        
	
                          (4)
                          
                            \(\mathcal {B}\) sends \((\mathbf {c}'_{0},\mathbf {c}'_{1})\) to \(\mathcal {A}\) and \(\mathcal {A}\) outputs \(\nu '\).

                          
                        


                    
                    By assumption \(\mathcal {A}\) will output a valid decryption. Hence, we have [image: ]. Finally, \(\mathcal {B}\) sets [image: ] and output \(\mathbf {g}^{(2)}\) as the solution of CDH-BIPC problem with instance \((\mathbf {f}^{(1)},\mathbf {f}^{(2)},\mathbf {g}^{(1)})\). This ends the proof of Theorem 3.

                  D Special Property of \(\varPsi _{[n,m,k]}\)
Since any \(\psi \in \varPsi _{[n,m,k]}\) can be seen as a matrix with circulant structure, it is easy to see that the following property holds.

                    Property 1

                    Let \(\psi \in \varPsi _{[n,m,k]}\). Let define as follows.
$$\begin{aligned} \psi _{0,0}&:= \psi _{k,k}, \\ \psi _{i,0}&:= \psi _{i,k} \qquad \text{ for } \text{ any } i\in [1,k],\\ \psi _{0,j}&:= \psi _{k,j} \qquad \text{ for } \text{ any } j\in [1,k]\text{. } \end{aligned}$$

Then, the followings hold for any \(\tau \in [1,k]\).
$$\begin{aligned} \psi _{\tau ,j}=\psi _{i,(i+j-\tau ) \text { mod } {k}}\qquad \text{ for } \text{ any } i,j\in [1,k], \end{aligned}$$

                    (13)
                

where \(a \text { mod } {k}\) is always set to non-negative value for any \(a\in \mathbb {Z}\).Footnote 1


                  E Proof of Lemma 1
In this section, we will prove Lemma 1. First, as preparation, we introduce the following lemma.

                    Lemma 2

                    Let \(\mathbf {u,\mathbf {w}}\in \mathcal {MQ}(n,m)\) and \(\mu _{1},\mu _{2}\in \left( \left( \mathbb {C}\mathrm {irc}_{m}\cap \mathbb {GL}_{m}\right) \cup \{0_{m}\}\right) \)

                    \(\times \left( \left( \mathbb {C}\mathrm {irc}_{n}\cap \mathbb {GL}_{n}\right) \cup \{0_{n}\}\right) \). And let define \(\mu _{1}:=(A_{1},B_{1})\) and \(\mu _{2}:=(A_{2},B_{2})\). Then, the following properties hold.

                    
                      	
                          Distributive property: 
$$\begin{aligned} \mu _{1}*(\mathbf {u}+\mathbf {w})&=\mu _{1}*\mathbf {u}+\mu _{1}*\mathbf {w}. \end{aligned}$$

                    (14)
                



                        
	
                          Commutative property: 
$$\begin{aligned} \mu _{2}*\left( \mu _{1}*\mathbf {u}\right)&=\mu _{1}*\left( \mu _{2}*\mathbf {u}\right) . \end{aligned}$$

                    (15)
                



                        


                    
                  We put the proof of Lemma 2 in Appendix F.
In order to prove Lemma 1, it is sufficient for us to prove that the following holds for any \(\tau \in [1,k]\).
[image: ]

                    (16)
                

Since here we need to use Property 1 shown in Appendix D, let us define the followings.
$$\begin{aligned} \psi _{0,0}&:= \psi _{k,k},\qquad&\varphi _{0,0} := \varphi _{k,k},&\end{aligned}$$

                    (17)
                


$$\begin{aligned} \psi _{i,0}&:= \psi _{i,k},&\varphi _{i,0} := \varphi _{i,k}&\qquad \text{ for } \text{ any } i\in [1,k], \end{aligned}$$

                    (18)
                


$$\begin{aligned} \psi _{0,j}&:= \psi _{k,j},&\varphi _{0,j} := \varphi _{k,j}&\qquad \text{ for } \text{ any } j\in [1,k]\text{. } \end{aligned}$$

                    (19)
                

Now, let us expand the Eq. (16).
[image: ]

                    (20)
                

where:
	
Step (a) is due to the distributive property in Lemma 2,


	
Step (b) is due to the commutative property in Lemma 2,


	
Step (c) is due to the Property 1 applied to \(\psi _{i,j}\),


	
Step (d) is due to the Property 1 applied to \(\varphi _{\tau ,i}\),



and by defining \(i':=(\tau +j-i) \text { mod } {k}\), we obtain as follows:
[image: ]

                    (21)
                

where:
	
Step (e) is due to the definitions in Eqs. (17), (18) and (19),


	
Step (f) is due to the distributive property in Lemma 2.




This ends the proof of Lemma 1.    \(\square \)
F Proof of Lemma 2
First let us prove Eq. (14).
$$\begin{aligned} \mu _{1}*(\mathbf {u}+\mathbf {w})&=A_{1}\circ (\mathbf {u}+\mathbf {w})\circ B_{1} =A_{1}\circ (\mathbf {u}\circ B_{1}+\mathbf {w}\circ B_{1})\\&=A_{1}\circ \mathbf {u}\circ B_{1}+A_{1}\circ \mathbf {w}\circ B_{1} =\mu _{1}*\mathbf {u}+\mu _{1}*\mathbf {w}. \end{aligned}$$

Next, let us prove Eq. (15). Recall that since \(\mu _{1},\mu _{2}\in (\left( \mathbb {C}\mathrm {irc}_{m}\cap \mathbb {GL}_{m}\right) \cup \{0_{m}\})\times \left( \left( \mathbb {C}\mathrm {irc}_{n}\cap \mathbb {GL}_{n}\right) \cup \{0_{n}\}\right) \), the following matrices are circulant matrices: \(A_{1},A_{2}\), \(B_{1},B_{2}\). Thus, the followings hold: \(A_{1}A_{2}=A_{2}A_{1}\) and \(B_{1}B_{2}=B_{2}B_{1}\). Hence, we obtain as follows.
$$\begin{aligned} \mu _{2}*\left( \mu _{1}*\mathbf {u}\right)&=A_{2}\circ \left( A_{1}\circ \mathbf {u}\circ B_{1}\right) \circ B_{2} =\left( A_{2}A_{1}\right) \circ \mathbf {u}\circ \left( B_{1}B_{2}\right) \\&=\left( A_{1}A_{2}\right) \circ \mathbf {u}\circ \left( B_{2}B_{1}\right) =A_{1}\circ \left( A_{2}\circ \mathbf {u}\circ B_{2}\right) \circ B_{1} =\mu _{1}*\left( \mu _{2}*\mathbf {u}\right) . \end{aligned}$$

This ends the proof of Lemma 2.
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