Skip to main content

Positioning System for UAV Precision Tasks Near Walls in GPS Denied and Metallic Environments

  • Conference paper
  • First Online:
Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Abstract

A positioning system based on the combination of various measurements is being developed in order to allow precise UAV navigation on GPS denied environments. In the case of study, the task is developed near walls in a closed fully metallic environment with nearly homogeneous floor and walls. This led up to some interesting challenges. The first one regarding RF signal transmission on a metallic environment. Secondly, the difficulty of using SLAM or other computer vision navigation solutions due to the homogeneity of the walls and floor. Finally, a working place located near walls, where positioning systems tend to offer worst accuracy. To overcome these challenges, the proposed positioning method combines an Ultra Wide Band (UWB) based system, for global location, with unidirectional laser range finders, for very precise near-wall measurements. Moreover, RF transmission on various frequencies and results of the proposed positioning precision experiments performed are shown and results analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wing, M.G., Eklund, A., Kellogg, L.D.: Consumer-grade global positioning system (GPS) accuracy and reliability. J. For. 103, 169–173 (2018). https://doi.org/10.1093/jof/103.4.169

    Article  Google Scholar 

  2. Li, X., Ge, M., Dai, X., Ren, X., Fritsche, M., Wickert, J., Schuh, H.: Accuracy and reliability of multi-GNSS real-time precise positioning: GPS, GLONASS, BeiDou, and Galileo. J. Geod. 89, 607–635 (2015). https://doi.org/10.1007/s00190-015-0802-8

    Article  Google Scholar 

  3. Gross, J.N., Gu, Y., Rhudy, M.B.: Robust UAV relative navigation with DGPS, INS, and peer-to-peer radio ranging. IEEE Trans. Autom. Sci. Eng. 12, 935–944 (2015). https://doi.org/10.1109/TASE.2014.2383357

    Article  Google Scholar 

  4. Dwiyasa, F., Lim, M.H.: A survey of problems and approaches in wireless-based indoor positioning. In: 2016 International Conference on Indoor Positioning and Indoor Navigation, IPIN 2016, pp. 4–7 (2016). https://doi.org/10.1109/IPIN.2016.7743591

  5. Wu, Z.H., Han, Y., Chen, Y., Liu, K.J.R.: A time-reversal paradigm for indoor positioning system. IEEE Trans. Veh. Technol. 64, 1331–1339 (2015). https://doi.org/10.1109/TVT.2015.2397437

    Article  Google Scholar 

  6. Gueuning, F.E., Varlan, M., Eugène, C.E., Dupuis, P.: Accurate distance measurement by an autonomous ultrasonic system combining time-of-flight and phase-shift methods. IEEE Trans. Instrum. Meas. 46, 1236–1240 (1997). https://doi.org/10.1109/19.668260

    Article  Google Scholar 

  7. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 37, 1067–1080 (2007). https://doi.org/10.1109/TSMCC.2007.905750

    Article  Google Scholar 

  8. Brena, R.F., García-Vázquez, J.P., Galván-Tejada, C.E., Muñoz-Rodriguez, D., Vargas-Rosales, C., Fangmeyer, J.: Evolution of indoor positioning technologies: a survey. J. Sens. 2017 (2017). https://doi.org/10.1155/2017/2630413

    Article  Google Scholar 

  9. Retscher, G., Moser, E., Vredeveld, D., Heberling, D.: Performance and accuracy test of the WLAN indoor positioning system “ipos” principle of WLAN positioning. In: Presenting 3rd Workshop on Positioning, Navigation and Communication, WPNC 2006, University Hannover, Germany, pp. 7–16 (2006)

    Google Scholar 

  10. Faragher, R., Faragher, R., Harle, R.: An analysis of the accuracy of bluetooth low energy for indoor positioning applications (2009)

    Google Scholar 

  11. Zhang, D., Xia, F., Yang, Z., Yao, L., Zhao, W.: Localization technologies for indoor human tracking. In: Proceedings of the 2010 5th International Conference on Future Information Technology, Future 2010, pp. 1–6 (2010). https://doi.org/10.1109/FUTURETECH.2010.5482731

  12. Shi, G., Ming, Y.: Survey of indoor positioning systems based on ultra-wideband (UWB) technology, vol. 348, pp. 1269–1278 (2016). https://doi.org/10.1007/978-81-322-2580-5

    Google Scholar 

  13. Li, R., Liu, J., Zhang, L., Hang, Y.: LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments. In: Proceedings of the 2014 DGON Inertial Sensors and Systems, ISS 2014, pp. 1–15 (2014). https://doi.org/10.1109/InertialSensors.2014.7049479

  14. Kara Mohamed, M., Patra, S., Lanzon, A.: Designing simple indoor navigation system for UAVs. In: 2011 19th Mediterranean Conference on Control & Automation, MED 2011, pp. 1223–1228 (2011). https://doi.org/10.1109/MED.2011.5983054

  15. García Carrillo, L.R., Dzul López, A.E., Lozano, R., Pégard, C.: Combining stereo vision and inertial navigation system for a quad-rotor UAV. J. Intell. Robot. Syst. Theory Appl. 65, 373–387 (2012). https://doi.org/10.1007/s10846-011-9571-7

    Article  Google Scholar 

  16. Benini, A., Mancini, A., Longhi, S.: An IMU/UWB/vision-based extended kalman filter for mini-UAV localization in indoor environment using 802.15.4a wireless sensor network. J. Intell. Robot. Syst. Theory Appl. 70, 461–476 (2013). https://doi.org/10.1007/s10846-012-9742-1

    Article  Google Scholar 

  17. Bodie, K., Brunner, M., Pantic, M., Walser, S., Pfändler, P., Angst, U., Siegwart, R., Nieto, J.: An omnidirectional aerial manipulation platform for contact-based inspection (2019)

    Google Scholar 

  18. Ikeda, T., Yasui, S., Fujihara, M., Ohara, K., Ashizawa, S., Ichikawa, A., Okino, A., Oomichi, T., Fukuda, T.: Wall contact by octo-rotor UAV with one DoF manipulator for bridge inspection. In: IEEE International Conference on Intelligent Robots and Systems, September 2017, pp. 5122–5127 (2017). https://doi.org/10.1109/IROS.2017.8206398

  19. Myeong, W., Myung, H.: Development of a wall-climbing drone capable of vertical soft landing using a tilt-rotor mechanism. IEEE Access 7, 4868–4879 (2019). https://doi.org/10.1109/ACCESS.2018.2889686

    Article  Google Scholar 

  20. Kamel, M., Verling, S., Elkhatib, O., Sprecher, C., Wulkop, P., Taylor, Z., Siegwart, R., Gilitschenski, I.: Voliro: an omnidirectional hexacopter with tiltable rotors (2018). https://doi.org/10.1109/MRA.2018.2866758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Orjales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orjales, F., Losada-Pita, J., Paz-Lopez, A., Deibe, A. (2020). Positioning System for UAV Precision Tasks Near Walls in GPS Denied and Metallic Environments. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-36150-1_26

Download citation

Publish with us

Policies and ethics