Skip to main content

Spherical Fully Covered UAV with Autonomous Indoor Localization

  • Conference paper
  • First Online:
Book cover Robot 2019: Fourth Iberian Robotics Conference (ROBOT 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1092))

Included in the following conference series:

  • 1412 Accesses

Abstract

This paper presents a UAV (Unmanned Aerial Vehicle) with intrinsic safety which can interact with people and obstacles while flying in an indoor environment in an autonomous way. A system description including mechanical features, the design of the external protective case, electrical connections and the communication using the Robot Operating System (ROS) between the different devices is presented. Then, the dynamic model of the aerial system taking into account the protective case, the local positioning algorithm (Hector SLAM) and the control models implemented are also described. Different experimental results, which include simulation in Gazebo and real flights are shown to verify the positioning system developed. Two additional experiments have also been tested to validate two emergency safety systems in case of a failure in the position estimation is detected.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Valavanis, K.P., Vachtsevanos, G.J.: Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht (2015)

    Book  Google Scholar 

  2. Sanchez-Cuevas, P.J., Heredia, G., Ollero, A.: Multirotor UAS for bridge inspection by contact using the ceiling effect. In: International Conference on Unmanned Aircraft Systems (ICUAS), Miami, pp. 767–774. IEEE (2017)

    Google Scholar 

  3. Nikolic, J., Burri, M., Rehder, J., Leutenegger, S., Huerzeler, C., Siegwart, R.: A UAV system for inspection of industrial facilities. In: IEEE Aerospace Conference, Montana. IEEE (2013)

    Google Scholar 

  4. Gandhi, D., Pinto, L., Gupta, A.: Learning to fly by crashing. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, pp. 3948–3955. IEEE (2017)

    Google Scholar 

  5. Briod, A., Kornatowski, P., Zufferey, J., Floreano, D.: A collision-resilient flying robot. J. Field Robot. 31, 496–509 (2014)

    Article  Google Scholar 

  6. Flyability webpage. https://www.flyability.com/. Accessed 3 Oct 2019

  7. Kornatowski, P.M., Mintchev, S., Floreano, D.: An origami-inspired cargo drone. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, pp. 6855–6862. IEEE (2017)

    Google Scholar 

  8. Kalantari, A., Spenko, M.: Design and experimental validation of HyTAQ, a hybrid terrestrial and aerial quadrotor. In: IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 4445–4450. IEEE (2013)

    Google Scholar 

  9. Gazebo webpage. http://gazebosim.org/. Accessed 3 Oct 2019

  10. Pixhawk documentation page. https://docs.px4.io/en/flight_controller/pixhawk.html. Accessed 3 Oct 2019

  11. Meier, L., Honegger, D., Pollefeys, M.: PX4: a node-based multithreaded open source robotics framework for deeply embedded platforms. In: IEEE International Conference on Robotics and Automation (ICRA), Seattle, pp. 6235–6240. IEEE (2015)

    Google Scholar 

  12. Atoev, S., Kwon, K.R., Lee, S.H., Moon, K.S.: Data analysis of the MAVLink communication protocol. In: International Conference on Information Science and Communications Technologies (ICISCT), Tashkent, pp. 1–3. IEEE (2017)

    Google Scholar 

  13. Odroid U3 documentation page. https://www.hardkernel.com/shop/odroid-u3/. Accessed 3 Oct 2019

  14. Hokuyo documentation page. https://www.hokuyo-aut.jp/search/single.php?serial=169. Accessed 3 Oct 2019

  15. ROS Kinetic page. http://wiki.ros.org/kinetic. Accessed 3 Oct 2019

  16. PX4 documentation webpage. https://px4.io/documentation/. Accessed 3 Oct 2019

  17. ROS Mavros webpage. http://wiki.ros.org/mavros. Accessed 3 Oct 2019

  18. Real, F., Torres-González, A., Ramón-Soria, P., Capitán, J., Ollero, A.: UAL: an abstraction layer for unmanned aerial vehicles. In: 2nd International Symposium on Aerial Robotics (ISAR), Philadelphia. Springer, Cham (2018)

    Google Scholar 

  19. UAL documentation page. https://github.com/grvcTeam/grvc-ual/wiki. Accessed 3 Oct 2019

  20. Hector SLAM documentation. http://wiki.ros.org/hector_slam. Accessed 3 Oct 2019

  21. Kohlbrecher, S., Von Stryk, O., Meyer, J., Klingauf, U.: A flexible and scalable slam system with full 3d motion estimation. In: IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, pp. 155–160. IEEE (2011)

    Google Scholar 

  22. Hokuyo node documentation. http://wiki.ros.org/hokuyo_node. Accessed 3 Oct 2019

  23. LaserScan message documentation. http://docs.ros.org/melodic/api/sensor_msgs/html/msg/LaserScan.html. Accessed 3 Oct 2019

  24. PoseStamped message documentation. http://docs.ros.org/melodic/api/geometry_msgs/html/msg/PoseStamped.html. Accessed 3 Oct 2019

  25. PX4 parameter reference guide. https://dev.px4.io/en/advanced/parameter_reference.html. Accessed 3 Oct 2019

  26. Link to the video of the experiments. https://www.dropbox.com/sh/4evf4xgn4hslycz/AADmZHtEL8xDlwrCMvzvflCia?dl=0

Download references

Acknowledgment

This work has been supported by the national project ARM-EXTEND (DPI2017-89790-R) funded by the Spanish RD plan and HYFLIERS H2020-ICT-2017-1-779411 projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agustin Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ramos, A., Sanchez-Cuevas, P.J., Heredia, G., Ollero, A. (2020). Spherical Fully Covered UAV with Autonomous Indoor Localization. In: Silva, M., Luís Lima, J., Reis, L., Sanfeliu, A., Tardioli, D. (eds) Robot 2019: Fourth Iberian Robotics Conference. ROBOT 2019. Advances in Intelligent Systems and Computing, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-35990-4_29

Download citation

Publish with us

Policies and ethics