Skip to main content

Use of Edge-on Impact Tests with Synchrotron-Based MHz Radioscopy to Investigate the Multiple Fragmentation Process in SiC Ceramics

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

Ceramic materials are widely used all around the world in protective solutions as front plate of bilayered configurations, a metallic or composite material being used as backing to absorb the kinetic energy of fragments. However, during the impact, an intense fragmentation process composed of numerous oriented cracks develops in the ceramic plate due to high-loading rates tensile stresses. The edge-on impact (EOI) configurations constitute one of the best testing techniques to analysis the dynamic fragmentation process in brittle materials. A metallic cylindrical projectile hits the edge of a prismatic target of thickness smaller than the projectile diameter with an impact velocity ranging from 100 to 300 m/s. The damage process is usually observed on the lateral surface with a digital ultra-high speed camera (“open configuration”). However, the fragmentation cannot be observed in the bulk of the target except if a post-mortem analysis is conducted (“sarcophagus configuration”). In the present work, in addition to this classical testing methods, EOI experiments have been conducted in the European Synchrotron Radiation Facility (beamline ID19) with X-ray radioscopy technique using the 16-bunch operation mode. Targets, 60 × 30 × 6 mm3, made of silicon carbide were placed in an intense X-ray beam (mean photon energy about 30 keV) providing an observation field of 12.8 mm in width and 8 mm in height, and impacted with projectile velocities ranging from 150 to 200 m/s. A Shimadzu HPV-X2 camera lens-coupled to a fast scintillator (LYSO:Ce) was used to visualize the fragmentation process through the thickness with an interframe time set to 1065 ns. The fragmentation pattern was compared to data obtained in classical “open configuration” with surface visualization and to post-mortem analysis obtained in “sarcophagus configuration”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. den Reijer, P.C.: Impact on Ceramic Faced Armour. PhD Thesis, Technical University of Delft (1991)

    Google Scholar 

  2. Forquin, P., Tran, L., Louvigné, P.-F., Rota, L., Hild, F.: Effect of aluminum reinforcement on the dynamic fragmentation of SiC ceramics. Int. J. Impact Eng. 28, 1061–1076 (2003)

    Article  Google Scholar 

  3. Zinszner, J.L., Forquin, P., Rossiquet, G.: Experimental and numerical analysis of the dynamic fragmentation in a SiC ceramic under impact. Int. J. Impact Eng. 76, 9–19 (2015)

    Article  Google Scholar 

  4. Forquin, P., Ando, E.: Application of micro-tomography and image analysis to the quantification of fragmentation in ceramics after impact loading. Phil. Trans. R. Soc. A. 20160166 (2017). https://doi.org/10.1098/rsta.2016.0166

    Article  Google Scholar 

  5. Forquin, P., Zinszner, J.-L., Rossiquet, G., Erzar, B.: Microstructure influence on the fragmentation properties of dense silicon carbides under impact. Mech. Mater. 123, 59–76 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been performed in the framework of the Brittle’s CODEX chair supported by the UGA (Univ. Grenoble Alpes) Foundation and sponsored by the Saint-Gobain and Lafarge-Holcim companies. These sponsors are gratefully acknowledged by the authors. The authors are thankful to Saint-Gobain for providing the tested ceramic samples. The authors would like to address a sincere thank you to the team at Beamline ID19, and to the students and post-docs at the University of Oxford for their assistance with the experiments in ESRF. The authors are grateful to ESRF for supporting this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Forquin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Forquin, P., Lukic, B., Duplan, Y., Saletti, D., Eakins, D., Rack, A. (2020). Use of Edge-on Impact Tests with Synchrotron-Based MHz Radioscopy to Investigate the Multiple Fragmentation Process in SiC Ceramics. In: Lamberson, L. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30021-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30021-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30020-3

  • Online ISBN: 978-3-030-30021-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics