Skip to main content

Optimization of Fabrication Technique to Prepare Acacia Wood Reinforced Bio-composites

  • Chapter
  • First Online:
Acacia Wood Bio-composites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 281 Accesses

Abstract

This chapter discuss the preparation and optimization of wood polymer composites based on the impregnation by polymer and nanoclay. Wood impregnation is one of the basic and most frequently used techniques to enhance the wood properties. This fabrication technique offers a wide range of applications depending on type of impregnants applied. Impregnation could make the wood less flammable, more dimensionally stable, more resistant to decay, harder, stronger, and more stable against UV rays. Softwood (Acacia) was impregnated with acrylonitrile, poly(vinyl) alcohol and organically nanoclay. The specimen preparation was carried out using the vacuum-chamber in a laboratory scale. The physical and mechanical properties of the modified wood were analyzed through Tensile and Flexural tests, SEM, FTIR, TGA and DSC. Mechanical test results shown that Tensile and Flexural strength have improvements with the addition of the nanofillers. The FTIR test shown that the chemical bonding between PVA into the wood cell would certainly enhance the matrix adhesion and contribute to its property enhancement. SEM illustrate the samples surface morphology which confirm the impregnation of the specimen. TGA results shown the additives impregnate into the wood component increase the thermal stability compared to the raw wood. DSC results indicate the impregnate wood has a higher melting temperature compared to the raw wood, due to existing of the polymer and nanoclay interfacial bonding among cell wall of the wood. Response surface methodology (RSM) was used to optimize the conditions for the preparation of wood composites. The design experiment was carried out using Design Expert 11.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah, Z. W., Dong, Y., Davies, I. J., & Barbhuiya, S. (2017). PVA, PVA blends, and their nanocomposites for biodegradable packaging application. Polymer—Plastics Technology and Engineering, 56(12), 1307–1344. https://doi.org/10.1080/03602559.2016.1275684.

    Article  CAS  Google Scholar 

  • Agronômicas, F. D. C., De Recursos, D., & Ciências, N. (2010). Use of glass transition temperature for stabilization of board’s cracks of Eucalyptus grandis. Anais da Academia Brasileira de Ciências, 82, 791–797.

    Article  Google Scholar 

  • Badji, A. M., Ly, E. H. B., Ndiaye, D., Diallo, A. K., Kebe, N., & Verney, V. (2016). The effect of poly-ethylene-co-glycidyl methacrylate efficiency and clay platelets on thermal and rheological properties of wood polyethylene composites. Advances in Chemical Engineering and Science, 6(4), 436–455. https://doi.org/10.4236/aces.2016.64040.

    Article  CAS  Google Scholar 

  • Bakri, M. K. B., Jayamani, E., Hamdan, S., Rahman, M. R., & Kakar, A. (2018a). Potential of Borneo Acacia wood in fully biodegradable bio-composites’ commercial production and application. Polymer Bulletin, 75(11), 5333–5354. https://doi.org/10.1007/s00289-018-2299-9.

    Article  CAS  Google Scholar 

  • Bakri, M. K. B., Jayamani, E., Heng, S. K., & Kakar, A. (2018b). Short review: Potential production of acacia wood and its biocomposites. Materials Science Forum, 917, 37–41. https://doi.org/10.4028/www.scientific.net/MSF.917.37.

    Article  Google Scholar 

  • Barton, J., Niemczyk, A., Czaja, K., Korach, Ł., & Sacher-Majewska, B. (2014). Polymer composites, biocomposites and nanocomposites. Production, composition, properties and application fields. Chemik, 68(4), 284–287.

    Google Scholar 

  • Binhussain, M. A., & El-Tonsy, M. M. (2013). Palm leave and plastic waste wood composite for out-door structures. Construction and Building Materials, 47, 1431–1435. https://doi.org/10.1016/j.conbuildmat.2013.06.031.

    Article  Google Scholar 

  • Bugnicourt, E., Cinelli, P., Lazzeri, A., & Alvarez, V. (2014). Polyhydroxyalkanoate (PHA): Review of synthesis, characteristics, processing and potential applications in packaging. eXPRESS Polymer Letters, 8(11), 791–808. https://doi.org/10.3144/expresspolymlett.2014.82.

    Article  Google Scholar 

  • Devi, R. R., & Maji, T. K. (2013). In situ polymerized wood polymer composite: Effect of additives and nanoclay on the thermal, mechanical properties. Materials Research, 16(4), 954–963. https://doi.org/10.1590/S1516-14392013005000071.

    Article  CAS  Google Scholar 

  • dos Reis, E. F., Campos, F. S., Lage, A. P., Leite, R. C., Heneine, L. G., Vasconcelos, W. L., et al. (2006). Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Materials Research, 9(2), 185–191. https://doi.org/10.1590/S1516-14392006000200014.

    Article  Google Scholar 

  • Fabiyi, J. S., McDonald, A. G., & McIlroy, D. (2009). Wood modification effects on weathering of HDPE-based wood plastic composites. Journal of Polymers and the Environment, 17(1), 34–48. https://doi.org/10.1007/s10924-009-0118-y.

    Article  CAS  Google Scholar 

  • Faruk, O., Bledzki, A. K., Fink, H., & Sain, M. (2014). Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 299, 9–26. https://doi.org/10.1002/mame.201300008.

    Article  Google Scholar 

  • Frankowski, D. J., Capracotta, M. D., Martin, J. D., Khan, S. A., Spontak, R. J., Carolina, N., et al. (2007). Stability of organically modified montmorillonites and their polystyrene nanocomposites after prolonged thermal treatment. Chemistry of Materials, 19(11), 2757–2767.

    Article  CAS  Google Scholar 

  • Gupta, B. S., & Afshari, M. (2009). Tensile failure of polyacrylonitrile fibers. In Handbook of tensile properties of textile and technical fibres (pp. 486–528). https://doi.org/10.1533/9781845696801.2.486.

    Chapter  Google Scholar 

  • Hallensleben, M. L., Fuss, R., & Mummy, F. (2015). Polyvinyl compounds, others. In Ullmann’s encyclopedia of industrial chemistry (pp. 1–23). https://doi.org/10.1002/14356007.a21_743.pub2.

  • Hamdan, S., & Mazlan, A. B. (2018). Improved interfacial interaction between wood and styrene with the help of organically modified nanoclay. BioResources, 13(4), 8100–8112.

    Google Scholar 

  • Hansora, D. (2014, November). Industrial manufacturing process of acrylonitrile (pp. 46–49). Retrieved from https://www.researchgate.net/publication/310505082.

  • Hossen, F., Hamdan, S., & Rahman, R. (2018). Investigation of the acoustic properties of chemically impregnated kayu malam wood used for musical instrument. Advances in Materials Science and Engineering, 2018, 1–7.

    Article  Google Scholar 

  • Howell, B. R., & Baynes, S. M. (2007). Abiotic factors. In Culture of cold-water marine fish. https://doi.org/10.1002/9780470995617.ch2.

  • Islam, M. S., Hamdan, S., Ahmad, M. B., Hasan, M., Hassan, A., Haafiz, M. K. M., et al. (2014). Effect of PVA-co-MMA copolymer on the physical, mechanical, and thermal properties of tropical wood materials. Advances in Materials Science and Engineering, 2014. https://doi.org/10.1155/2014/626850.

    Article  Google Scholar 

  • Kirker, G., & Winandy, J. (2014). Above ground deterioration of wood and wood-based materials. ACS Symposium Series, 1158, 113–129. https://doi.org/10.1021/bk-2014-1158.ch006.

    Article  CAS  Google Scholar 

  • Kondratyeva, E., Safiullin, K., Motygullin, I., Klochkov, A., Tagirov, M., & Reita, V. (2016). Thermal modification of wood and a complex study of its properties by magnetic resonance and other methods. Wood Science and Technology, 50(5), 895–916. https://doi.org/10.1007/s00226-016-0825-1.

    Article  CAS  Google Scholar 

  • Kristoffer, S. (2012). Characteristics of wood plastic composites based on modified wood: Moisture properties, biological performance and micromorphology. KTH Royal Institute of Technology.

    Google Scholar 

  • Li, Y., Liu, Z., Dong, X., Fu, Y., & Liu, Y. (2013). Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. International Biodeterioration and Biodegradation, 84, 401–406. https://doi.org/10.1016/j.ibiod.2012.03.013.

    Article  CAS  Google Scholar 

  • Liu, R., Morrell, J. J., & Yan, L. (2018). Thermogravimetric analysis studies of thermally-treated glycerol impregnated poplar wood. BioResources, 13(2004), 1563–1575.

    Google Scholar 

  • Lizasoain, A., Tort, L. F., García, M., Gomez, M. M., Leite, J. P., Miagostovich, M. P., et al. (2015). Development of novel flax bio-matrix composites for non-structural and structural vehicle applications. Journal of Applied Microbiology.

    Google Scholar 

  • Lyoo, W. S., & Lee, H. W. (2002). Synthesis of high-molecular-weight poly(vinyl alcohol) with high yield by novel one-batch suspension polymerization of vinyl acetate and saponification. Colloid and Polymer Science, 280(9), 835–840. https://doi.org/10.1007/s00396-002-0691-2.

    Article  CAS  Google Scholar 

  • Martins, G., Antunes, F., Mateus, A., & Malça, C. (2017). Optimization of a wood plastic composite for architectural applications. Procedia Manufacturing, 12, 203–220. https://doi.org/10.1016/j.promfg.2017.08.025.

    Article  Google Scholar 

  • Mohanty, A. K., Misra, M., & Drzal, L. T. (2002). Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment, 10(1–2), 19–26. https://doi.org/10.1023/A:1021013921916.

    Article  CAS  Google Scholar 

  • Olad, A. (1996). Polymer/clay nanocomposites.

    Google Scholar 

  • Paril, P. (2016). Wood impregnation.

    Google Scholar 

  • Processes, O. (2006). Impregnation modification (Chap. 7, p. 1).

    Google Scholar 

  • Professors, A. (2009). Wood property variation in Acacia auriculiformis growing in Bangladesh. Wood and Fiber Science, 41(4), 359–365.

    Google Scholar 

  • Rahman, M. R. (2018). Wood polymer nanocomposites. https://doi.org/10.1007/978-3-319-65735-6.

    Book  Google Scholar 

  • Rahman, M. R., Hamdan, S., Ahmed, A. S., & Islam, M. S. (2010). Mechanical and biological performance of sodium metaperiodate-impregnated plasticized wood (PW). BioResources, 5(2), 1022–1035.

    CAS  Google Scholar 

  • Rahman, M. R., Lai, J. C. H., Hamdan, S., Ahmed, A. S., Baini, R., & Saleh, S. F. (2013). Combined styrene/MMA/nanoclay cross-linker effect on wood-polymer composites (WPCs). BioResources, 8(3). https://doi.org/10.15376/biores.8.3.4227-4237.

  • Rahman, R., Hamdan, S., Lai, J., & Hui, C. (2017). Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) of wood polymer nanocomposites. In MATEC web of conferences (p. 03013).

    Google Scholar 

  • Ratnasingam, J., Wai, L. T., Thanasegaran, G., Ioras, F., Vacalie, C., Coman, C., et al. (2013). Innovations in the forest products industry: The Malaysian experience. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(2), 601–607.

    Article  Google Scholar 

  • Razdil, J. A. F. B., Technologies, I., & Illinois, N. (2012). Introduction (Chap. 1). https://doi.org/10.1002/14356007.a01_177.

  • Rodrigues, W., Espinosa, M. M., Polito, W. L., & Sp, S. C. (2004). Comparison of the compressive strength of impregnated and nonimpregnated eucalyptus subjected to two different pressures and impregnation times. Materials Research, 7(2), 241–245.

    Article  CAS  Google Scholar 

  • Rokeya, U. K., Hossain, M. A., Ali, M. R., & Paul, S. P. (2010). Physical and mechanical properties of (Acacia auriculiformis × A. mangium) hybrid Acacia. Journal of Bangladesh Academy of Sciences, 34(2), 181–187.

    Google Scholar 

  • Rowell, R. M. (2006). Chemical modification of wood: A short review. Wood Material Science & Engineering, 1(1), 29–33. https://doi.org/10.1080/17480270600670923.

    Article  CAS  Google Scholar 

  • Roy, S. B. (2014). A review on bio-composites: Fabrication, properties and applications. International Journal of Innovative Research in Science, Engineering and Technology, 3(10), 16814–16824. https://doi.org/10.15680/IJIRSET.2014.0310058.

    Article  Google Scholar 

  • Sandberg, D., Kutnar, A., & Mantanis, G. (2017). Wood modification technologies—A review. iForest, 10(6), 895–908. https://doi.org/10.3832/ifor2380-010.

    Article  Google Scholar 

  • Uddin, N., & Kalyankar, R. R. (2011). Manufacturing and structural feasibility of natural fiber reinforced polymeric structural insulated panels for panelized construction. International Journal of Polymer Science, 2011(14). https://doi.org/10.1155/2011/963549.

    Article  Google Scholar 

  • Umachandran, K., & Sawicka, B. (2017). Study of timber market of Malaysia and its impact on the economy and employment. Journal of Advances in Agriculture, 7(3), 1123–1130.

    Article  Google Scholar 

  • Viet, D. Q., & Tho, V. D. S. (2017). Study on characteristics of acacia wood by FTIR and thermogrametric analysis. Vietnam Journal of Chemistry, 55(2), 259–264. https://doi.org/10.15625/2525-2321.2017-00456.

  • Wang, X., & Chai, Y. (2012). Thermal, mechanical, and moisture absorption properties of wood-TiO2 composites prepared by a sol-gel process. BioResources. https://doi.org/10.15376/biores.7.1.0893-0901.

  • Wegman, R. F., & Van Twisk, J. (2013). Plastics. In Surface preparation techniques for adhesive bonding (pp. 115–130). https://doi.org/10.1016/B978-1-4557-3126-8.00008-7.

    Chapter  Google Scholar 

  • Yadav, S. M., & Yusoh, K. B. (2016). Preparation and characterization of wood plastic composite reinforced by organoclay. Journal of the Indian Academy of Wood Science, 13(2), 118–131. https://doi.org/10.1007/s13196-016-0175-5.

    Article  Google Scholar 

  • Zhifeng, Z. (2007). Effects of the molecular structure of polyvinyl alcohol on the adhesion to fibre substrates. Fibres and Textiles in Eastern Europe, 15(1), 82–85.

    Google Scholar 

  • Zhu, G., Wang, F., Xu, K., Gao, Q., & Liu, Y. (2013). Study on properties of poly (vinyl alcohol)/polyacrylonitrile blend film. ARTIGO CIENTÍFICO. Polímeros: Ciência e Tecnologia, 23, 146–151. https://doi.org/10.4322/polimeros.2013.076.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md Rezaur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahman, M.R., Hamdan, S., Taib, S.N.L., Baini, R. (2019). Optimization of Fabrication Technique to Prepare Acacia Wood Reinforced Bio-composites. In: Rahman, M. (eds) Acacia Wood Bio-composites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-29627-8_3

Download citation

Publish with us

Policies and ethics