Skip to main content

Lattice QCD Impact on Determination of the CKM Matrix

  • Conference paper
  • First Online:
16th Conference on Flavor Physics and CP Violation (FPCP 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 234))

Included in the following conference series:

  • 402 Accesses

Abstract

We review many lattice QCD calculations that impact the precise determination of the CKM matrix. We focus on decay constants and semileptonic form factors of both light (\(\pi \) and K) and heavy-light (\(D_{(s)}\) and \(B_{(s)}\)) mesons. Implication of \(\Lambda _b\) form factors will be shown. When combined with experimental results for branching fractions and differential decay rates, the above calculations strongly constrain the first two rows of the CKM matrix. We discuss a long standing difference between \(|V_{ub}|\) and \(|V_{cb}|\) as determined from exclusive or inclusive decays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Aoki et al., Eur. Phys. J. C 77(2), 112 (2017). https://doi.org/10.1140/epjc/s10052-016-4509-7, arXiv:1607.00299 [hep-lat]

  2. C. Patrignani et al., [Particle Data Group], Chin. Phys. C 40(10), 100001 (2016). https://doi.org/10.1088/1674-1137/40/10/100001

    Article  Google Scholar 

  3. A. Bazavov et al., Phys. Rev. D 98(7), 074512 (2018). https://doi.org/10.1103/PhysRevD.98.074512, arXiv:1712.09262

  4. M. Moulson, PoS CKM 2016, 033 (2017). https://doi.org/10.22323/1.291.0033, arXiv:1704.04104 [hep-ex]

  5. A. Bazavov et al., Fermilab Lattice and MILC Collaborations. Phys. Rev. D 99(11), 114509 (2019). https://doi.org/10.1103/PhysRevD.99.114509, arXiv:1809.02827

  6. J.C. Hardy, I.S. Towner, arXiv:1807.01146 [nucl-ex]

  7. H. Na, C.T.H. Davies, E. Follana, G.P. Lepage, J. Shigemitsu, Phys. Rev. D 82, 114506 (2010). https://doi.org/10.1103/PhysRevD.82.114506, arXiv:1008.4562 [hep-lat]

  8. H. Na, C.T.H. Davies, E. Follana, J. Koponen, G.P. Lepage, J. Shigemitsu, Phys. Rev. D 84, 114505 (2011). https://doi.org/10.1103/PhysRevD.84.114505, arXiv:1109.1501 [hep-lat]

  9. V. Lubicz et al., [ETM Collaboration], Phys. Rev. D 96(5), 054514 (2017). https://doi.org/10.1103/PhysRevD.96.054514, arXiv:1706.03017 [hep-lat]

  10. T. Kaneko et al., [JLQCD Collaboration], EPJ Web Conf. 175, 13007 (2018). https://doi.org/10.1051/epjconf/201817513007, arXiv:1711.11235 [hep-lat]

    Article  Google Scholar 

  11. Y. Amhis et al., [HFLAV Collaboration], Eur. Phys. J. C 77(12), 895 (2017). https://doi.org/10.1140/epjc/s10052-017-5058-4, arXiv:1612.07233 [hep-ex]

  12. L. Riggio, G. Salerno, S. Simula, Eur. Phys. J. C 78(6), 501 (2018). https://doi.org/10.1140/epjc/s10052-018-5943-5, arXiv:1706.03657 [hep-lat]

  13. J.A. Bailey et al., [Fermilab Lattice and MILC Collaborations], Phys. Rev. D 92(1), 014024 (2015). https://doi.org/10.1103/PhysRevD.92.014024, arXiv:1503.07839 [hep-lat]

  14. W. Detmold, C. Lehner, S. Meinel, Phys. Rev. D 92(3), 034503 (2015). https://doi.org/10.1103/PhysRevD.92.034503, arXiv:1503.01421 [hep-lat]

  15. J.A. Bailey et al., [MILC Collaboration], Phys. Rev. D 92(3), 034506 (2015). https://doi.org/10.1103/PhysRevD.92.034506, arXiv:1503.07237 [hep-lat]

  16. D. Bigi, P. Gambino, Phys. Rev. D 94(9), 094008 (2016). https://doi.org/10.1103/PhysRevD.94.094008, arXiv:1606.08030 [hep-ph]

  17. C.G. Boyd, B. Grinstein, R.F. Lebed, Phys. Rev. D 56, 6895 (1997). https://doi.org/10.1103/PhysRevD.56.6895, arXiv:9705252 [hep-ph]

    Article  ADS  Google Scholar 

  18. D. Bigi, P. Gambino, S. Schacht, Phys. Lett. B 769, 441 (2017). https://doi.org/10.1016/j.physletb.2017.04.022, arXiv:1703.06124 [hep-ph]

    Article  ADS  Google Scholar 

  19. B. Grinstein, A. Kobach, Phys. Lett. B 771, 359 (2017). https://doi.org/10.1016/j.physletb.2017.05.078, arXiv:1703.08170 [hep-ph]

    Article  ADS  Google Scholar 

  20. A. Abdesselam et al., [Belle Collaboration], arXiv:1702.01521 [hep-ex]

  21. I. Caprini, L. Lellouch, M. Neubert, Nucl. Phys. B 530, 153 (1998). https://doi.org/10.1016/S0550-3213(98)00350-2, arXiv:9712417

    Article  ADS  Google Scholar 

  22. S. Aoki et al., Flavour lattice averaging group (20 Feb, 2019), p. 537. arXiv:1902.08191 [hep-lat]

Download references

Acknowledgements

I thank the FPCP organizers for their wonderful hospitality and a stimulating conference. I gratefully acknowledge my colleagues in the Fermilab Lattice and MILC Collaborations for wonderful working relationships and friendships. I also thank FLAG members who contribute countless hours to making lattice QCD results more easily available to the wider community. This work was supported by the US DOE grant DE-SC0010120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Gottlieb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gottlieb, S. (2019). Lattice QCD Impact on Determination of the CKM Matrix. In: Giri, A., Mohanta, R. (eds) 16th Conference on Flavor Physics and CP Violation. FPCP 2018. Springer Proceedings in Physics, vol 234. Springer, Cham. https://doi.org/10.1007/978-3-030-29622-3_32

Download citation

Publish with us

Policies and ethics