Skip to main content

Bayesian Optimisation for Safe Navigation Under Localisation Uncertainty

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 10))

Abstract

In outdoor environments, mobile robots are required to navigate through terrain with varying characteristics, some of which might significantly affect the integrity of the platform. Ideally, the robot should be able to identify areas that are safe for navigation based on its own percepts about the environment while avoiding damage to itself. Bayesian optimisation (BO) has been successfully applied to the task of learning a model of terrain traversability while guiding the robot through more traversable areas. An issue, however, is that localisation uncertainty can end up guiding the robot to unsafe areas and distort the model being learnt. In this paper, we address this problem and present a novel method that allows BO to consider localisation uncertainty by applying a Gaussian process model for uncertain inputs as a prior. We evaluate the proposed method in simulation and in experiments with a real robot navigating over rough terrain and compare it against standard BO methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The Robot Operating System: www.ros.org.

  2. 2.

    Emlid Reach RTK: https://emlid.com/reach/.

References

  1. Brochu, E., Cora, V.M., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. Technical report, University of British Columbia (2010)

    Google Scholar 

  2. Dallaire, P., Besse, C., Chaib-Draa, B.: An approximate inference with Gaussian process to latent functions from uncertain data. Neurocomputing 74, 1945–1955 (2011)

    Article  Google Scholar 

  3. Damianou, A.C., Titsias, M.K., Lawrence, N.D.: Variational inference for latent variables and uncertain inputs in Gaussian processes. J. Mach. Learn. Res. 17(1), 1–62 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Girard, A.: Approximate methods for propagation of uncertainty with Gaussian process models. University of Glasgow, Ph.D (2004)

    Google Scholar 

  5. Hennig, P., Schuler, C.J.: Entropy search for information-efficient global optimization. J. Mach. Learn. Res. (JMLR) 13, 1809–1837 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Ho, K., Peynot, T., Sukkarieh, S.: Traversability estimation for a planetary rover via experimental kernel learning in a Gaussian process framework. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3475–3482. IEEE, Karlsruhe, Germany (2013)

    Google Scholar 

  7. Komma, P., Weiss, C., Zell, A.: Adaptive Bayesian filtering for vibration-based terrain classification. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 3307–3313. IEEE, Kobe, Japan (2009)

    Google Scholar 

  8. Lang, T., Plagemann, C., Burgard, W.: Adaptive non-stationary kernel regression for terrain modelling. In: Burgard, W., Brock, O., Stachniss, C. (eds.) Proceedings of the Robotics: Science and Systems Conference (RSS). Atlanta, GA (2007)

    Google Scholar 

  9. Maekawa, T., Noda, T., Tamura, S., Ozaki, T., Machida, K.I.: Curvature continuous path generation for autonomous vehicle using B-spline curves. Comput.-Aided Des. 42(4), 350–359 (2010)

    Google Scholar 

  10. Marchant, R., Ramos, F.: Bayesian optimisation for intelligent environmental monitoring. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE (2012)

    Google Scholar 

  11. Marchant, R., Ramos, F.: Bayesian optimisation for informative continuous path planning. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 6136–6143 (2014)

    Google Scholar 

  12. Martin, S., Murphy, L., Corke, P.: Building large scale traversability maps using vehicle experience. In: The 13th International Symposium on Experimental Robotics (ISER), vol. 88, pp. 891–905. Springer (2013)

    Google Scholar 

  13. Mchutchon, A., Rasmussen, C.E.: Gaussian process training with input noise. In: Advances in Neural Information Processing Systems, pp. 1341–1349 (2011)

    Google Scholar 

  14. Moore, T., Stouch, D.: A generalized extended Kalman filter implementation for the robot operating system. In: Proceedings of the 13th International Conference on Intelligent Autonomous Systems (IAS-13). Springer (2014)

    Google Scholar 

  15. Nogueira, J., Martinez-Cantin, R., Bernardino, A., Jamone, L.: Unscented Bayesian optimization for safe robot grasping. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1967–1972. Daejeon, Korea (2016)

    Google Scholar 

  16. Nordin, P.: Mobile robot traversability mapping. Licentiate thesis, Linköping University (2012)

    Google Scholar 

  17. O’Callaghan, S.T., Ramos, F.T.: Gaussian process occupancy maps. Int. J. Robot. Res. (IJRR) 31(1), 42–62 (2012)

    Article  Google Scholar 

  18. Oliveira, R., Ott, L., Ramos, F.: Active perception for modelling energy consumption in off-road navigation. In: Australasian Conference on Robotics and Automation (ACRA). Brisbane, QLD, Australia (2016)

    Google Scholar 

  19. Powell, M.: A View of Algorithms for Optimization Without Derivatives. Technical report, Cambridge University DAMTP, Cambridge, United Kingdom (2007)

    Google Scholar 

  20. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. The MIT Press, Cambridge, MA (2006)

    MATH  Google Scholar 

  21. Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  22. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 25, pp. 2951–2959. Curran Associates, Inc. (2012)

    Google Scholar 

  23. Souza, J.R., Marchant, R., Ott, L., Wolf, D.F., Ramos, F.: Bayesian optimisation for active perception and smooth navigation. In: IEEE International Conference on Robotics and Automation (ICRA) (2014)

    Google Scholar 

  24. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 1–16 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Underwood, J., Wendel, A., Schofield, B., McMurray, L., Kimber, R.: Efficient in-field plant phenomics for row-crops with an autonomous ground vehicle. J. Field Robot. 34, 1061–1083 (2017)

    Google Scholar 

  26. Wan, E.A., van der Merwe, R.: The unscented Kalman filter for nonlinear estimation. In: Adaptive Systems for Signal Processing, Communications, and Control Symposium (AS-SPCC), pp. 153–158 (2000)

    Google Scholar 

  27. Wilson, A., Fern, A., Tadepalli, P.: Using trajectory data to improve Bayesian optimization for reinforcement learning. J. Mach. Learn. Res. 15, 253–282 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by CAPES, Brazil (scholarship BEX 13224/13-1), and by Data61/CSIRO, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oliveira, R., Ott, L., Guizilini, V., Ramos, F. (2020). Bayesian Optimisation for Safe Navigation Under Localisation Uncertainty. In: Amato, N., Hager, G., Thomas, S., Torres-Torriti, M. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 10. Springer, Cham. https://doi.org/10.1007/978-3-030-28619-4_37

Download citation

Publish with us

Policies and ethics