Skip to main content

An Efficient Algorithm for Computing the Set of Semi-stable Extensions

  • Conference paper
  • First Online:
Flexible Query Answering Systems (FQAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11529))

Included in the following conference series:

  • 638 Accesses

Abstract

Argumentation is one of the most relevant fields in the sphere of Artificial Intelligence. In particular, Dung’s abstract argumentation framework (AF) has received much attention in the last twenty years, and many computational issues have been investigated for different argumentation semantics. Specifically, enumerating the sets of arguments prescribed by an argumentation semantics (i.e., extensions) is arguably one of the most challenging problems for AFs, and this is the case also for the well-known semi-stable semantics.

In this paper, we propose an algorithm for efficiently computing the set of semi-stable extensions of a given AF. Our technique relies on exploiting the computation of grounded extension to snip some arguments in order to obtain a smaller framework (called cut-AF) over which state-of-the-art solvers for enumerating the semi-stable extensions are called, as needed to return the extensions of the input AF.

We experimentally evaluated our technique and found that our approach is orders of magnitude faster than the computation over the whole AF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://argumentationcompetition.org.

References

  1. Alfano, G., Greco, S., Parisi, F.: Computing stable and preferred extensions of dynamic bipolar argumentation frameworks. In: Proceedings of the 1st Workshop on Advances in Argumentation in AI Co-located with AI*IA, pp. 28–42 (2017)

    Google Scholar 

  2. Alfano, G., Greco, S., Parisi, F.: Efficient computation of extensions for dynamic abstract argumentation frameworks: an incremental approach. In: Proceedings of IJCAI, pp. 49–55 (2017)

    Google Scholar 

  3. Alfano, G., Greco, S., Parisi, F.: Computing extensions of dynamic abstract argumentation frameworks with second-order attacks. In: Proceedings of IDEAS, pp. 183–192 (2018)

    Google Scholar 

  4. Alfano, G., Greco, S., Parisi, F.: A meta-argumentation approach for the efficient computation of stable and preferred extensions in dynamic bipolar argumentation frameworks. Intelligenza Artificiale 12(2), 193–211 (2018)

    Article  Google Scholar 

  5. Alfano, G., Greco, S., Parisi, F.: An efficient algorithm for skeptical preferred acceptance in dynamic argumentation frameworks. In: Proceedings of IJCAI (2019, to appear)

    Google Scholar 

  6. Alfano, G., Greco, S., Parisi, F.: On scaling the enumeration of the preferred extensions of abstract argumentation frameworks. In: Proceedings of ACM/SIGAPP SAC, pp. 1147–1153 (2019)

    Google Scholar 

  7. Alfano, G., Greco, S., Parisi, F., Simari, G.I., Simari, G.R.: An incremental approach to structured argumentation over dynamic knowledge bases. In: Proceeding of KR, pp. 78–87 (2018)

    Google Scholar 

  8. Alfano, G., Greco, S., Parisi, F., Simari, G.I., Simari, G.R.: Incremental computation of warranted arguments in dynamic defeasible argumentation: the rule addition case. In: Proceedings of ACM/SIGAPP SAC, pp. 911–917 (2018)

    Google Scholar 

  9. Atkinson, K., et al.: Towards artificial argumentation. Artif. Intell. Mag. 38(3), 25–36 (2017)

    MathSciNet  Google Scholar 

  10. Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26(4), 365–410 (2011)

    Article  Google Scholar 

  11. Baroni, P., Cerutti, F., Giacomin, M., Guida, G.: Encompassing attacks to attacks in abstract argumentation frameworks. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 83–94. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02906-6_9

    Chapter  MATH  Google Scholar 

  12. Baroni, P., Giacomin, M., Liao, B.: On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: a division-based method. Artif. Intell. 212, 104–115 (2014)

    Article  Google Scholar 

  13. Baumann, R.: Splitting an Argumentation Framework. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS, vol. 6645, pp. 40–53. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_6

    Chapter  Google Scholar 

  14. Baumann, R., Brewka, G.: Expanding argumentation frameworks: enforcing and monotonicity results. In: Proceedings of COMMA, pp. 75–86 (2010)

    Google Scholar 

  15. Bench-Capon, T.J.M., Dunne, P.E.: Argumentation in artificial intelligence. Artif. Intell. 171(10–15), 619–641 (2007)

    Article  MathSciNet  Google Scholar 

  16. Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  17. Bliem, B., Hecher, M., Woltran, S.: On efficiently enumerating semi-stable extensions via dynamic programming on tree decompositions. In: Proceedings of COMMA, pp. 107–118 (2016)

    Google Scholar 

  18. Caminada, M.: Semi-stable semantics. In: Proceedings of COMMA, pp. 121–130 (2006)

    Google Scholar 

  19. Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: solving argumentation problems using SAT. In: Proceedings of COMMA, pp. 455–456 (2014)

    Google Scholar 

  20. Deagustini, C.A.D., Dalibón, S.E.F., Gottifredi, S., Falappa, M.A., Chesñevar, C.I., Simari, G.R.: Defeasible argumentation over relational databases. Argument Comput. 8(1), 35–59 (2017)

    Article  Google Scholar 

  21. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995)

    Article  MathSciNet  Google Scholar 

  22. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell. 173(18), 1559–1591 (2009)

    Article  MathSciNet  Google Scholar 

  23. Dunne, P.E., Caminada, M.: Computational complexity of semi-stable semantics in abstract argumentation frameworks. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.) JELIA 2008. LNCS, vol. 5293, pp. 153–165. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87803-2_14

    Chapter  MATH  Google Scholar 

  24. Dunne, P.E., Wooldridge, M.: Complexity of abstract argumentation. In: Simari, G., Rahwan, I. (eds.) Argumentation in Artificial Intelligence, pp. 85–104. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0_5

    Chapter  Google Scholar 

  25. Dvorák, W., Pichler, R., Woltran, S.: Towards fixed-parameter tractable algorithms for argumentation. In: Proceedings of KR (2010)

    Google Scholar 

  26. Dvorák, W., Woltran, S.: Complexity of semi-stable and stage semantics in argumentation frameworks. Inf. Process. Lett. 110(11), 425–430 (2010)

    Article  MathSciNet  Google Scholar 

  27. Fazzinga, B., Flesca, S., Parisi, F.: On the complexity of probabilistic abstract argumentation frameworks. ACM Trans. Comput. Log. 16(3), 22 (2015)

    Article  MathSciNet  Google Scholar 

  28. Fazzinga, B., Flesca, S., Parisi, F.: On efficiently estimating the probability of extensions in abstract argumentation frameworks. IJAR 69, 106–132 (2016)

    MathSciNet  MATH  Google Scholar 

  29. García, A.J., Simari, G.R.: Defeasible logic programming: an argumentative approach. Theory Pract. Log. Program. (TPLP) 4(1–2), 95–138 (2004)

    Article  MathSciNet  Google Scholar 

  30. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Logic Programming, vol. 2, pp. 1070–1080 (1988)

    Google Scholar 

  31. Greco, S., Parisi, F.: Efficient computation of deterministic extensions for dynamic abstract argumentation frameworks. In: Proceedings of ECAI, pp. 1668–1669 (2016)

    Google Scholar 

  32. Greco, S., Parisi, F.: Incremental computation of deterministic extensions for dynamic argumentation frameworks. In: Michael, L., Kakas, A. (eds.) JELIA 2016. LNCS, vol. 10021, pp. 288–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48758-8_19

    Chapter  Google Scholar 

  33. Greco, S., Parisi, F.: Incremental computation of grounded semantics for dynamic abstract argumentation frameworks. In: Aydoğan, R., Baarslag, T., Gerding, E., Jonker, C.M., Julian, V., Sanchez-Anguix, V. (eds.) COREDEMA 2016. LNCS, vol. 10238, pp. 66–81. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57285-7_5

    Chapter  Google Scholar 

  34. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Inf. Process. Lett. 27(3), 119–123 (1988)

    Article  MathSciNet  Google Scholar 

  35. Kröll, M., Pichler, R., Woltran, S.: On the complexity of enumerating the extensions of abstract argumentation frameworks. In: Proceedings of IJCAI, pp. 1145–1152 (2017)

    Google Scholar 

  36. Lagniez, J., Lonca, E., Mailly, J.: CoQuiAAS: a constraint-based quick abstract argumentation solver. In: Proceeding of IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 928–935 (2015)

    Google Scholar 

  37. Liao, B.S., Jin, L., Koons, R.C.: Dynamics of argumentation systems: a division-based method. Artif. Intell. 175(11), 1790–1814 (2011)

    Article  MathSciNet  Google Scholar 

  38. Liao, B.: Toward incremental computation of argumentation semantics: a decomposition-based approach. Ann. Math. Artif. Intell. 67(3–4), 319–358 (2013)

    Article  MathSciNet  Google Scholar 

  39. Liao, B., Huang, H.: Partial semantics of argumentation: basic properties and empirical results. J. Log. Comput. 23(3), 541–562 (2013)

    Article  MathSciNet  Google Scholar 

  40. Modgil, S.: Reasoning about preferences in argumentation frameworks. Artif. Intell. 173(9–10), 901–934 (2009)

    Article  MathSciNet  Google Scholar 

  41. Modgil, S., Prakken, H.: Revisiting preferences and argumentation. In: Proceedings of IJCAI, pp. 1021–1026 (2011)

    Google Scholar 

  42. Modgil, S., et al.: The added value of argumentation: examples and challenges. In: Ossowski, S. (ed.) Agreement Technologies. LGTS, vol. 8, pp. 357–404. Springer, New York (2013). https://doi.org/10.1007/978-94-007-5583-3_21

    Chapter  Google Scholar 

  43. Oikarinen, E., Woltran, S.: Characterizing strong equivalence for argumentation frameworks. Artif. Intell. 175(14–15), 1985–2009 (2011)

    Article  MathSciNet  Google Scholar 

  44. Rahwan, I., Simari, G.R.: Argumentation in Artificial Intelligence, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-98197-0

    Book  Google Scholar 

  45. Villata, S., Boella, G., Gabbay, D.M., van der Torre, L.W.N.: Modelling defeasible and prioritized support in bipolar argumentation. Ann. Math. Artif. Intell. 66(1–4), 163–197 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianvincenzo Alfano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alfano, G. (2019). An Efficient Algorithm for Computing the Set of Semi-stable Extensions. In: Cuzzocrea, A., Greco, S., Larsen, H., SaccĂ , D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2019. Lecture Notes in Computer Science(), vol 11529. Springer, Cham. https://doi.org/10.1007/978-3-030-27629-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27629-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27628-7

  • Online ISBN: 978-3-030-27629-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics