Skip to main content

Osteosarcopenia as a Lipotoxic Disease

  • Chapter
  • First Online:

Abstract

Osteosarcopenia, a combination of osteoporosis and sarcopenia is characterized by a synchronic loss of bone mineral density and muscle mass, which affects an important subset of frail individuals at higher risk of institutionalization, falls and fractures. This condition has been associated with fat accumulation in bone and muscles. This fat negatively impacts cell function and structure through secretion of free fatty acids and adipokines; a phenomenon called lipotoxicity. The aim of this chapter is to summarize the role of fat infiltration in the pathogenesis of osteosarcopenia including the pathways that are affected by adipocyte-secreted factors. This chapter will also explore the current and future therapeutic implications of targeting fat infiltration and lipotoxicity in osteosarcopenia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

ATG:

Autophagy proteins

BM:

Bone Marrow

BMC:

Bone mineral content

BMD:

Bone mineral density

BMP:

Bone morphogenetic protein

BMSCs:

Bone marrow-derived mesenchymal stem cell

BNIP3:

BCL2/adenovirus E1B 19 kDa protein-interacting protein 3

ERK:

Extracellular signal-regulated kinases

FFA:

Free Fatty Acids

HDL:

High-density lipoproteins

HFD:

High fat diet

HSD:

High sugar diet

JNK:

C-Jun N-terminal kinases

LC3:

Microtubule-associated protein light chain

LDLs:

Low-density lipoproteins

LPL:

Lipoprotein lipase

PA:

Palmitic acid

TCA:

Tricarboxylic Acid

ULK:

UNC-51-like Kinase

References

  • Al Saedi A, Bani Hassan E, Duque G (2019b) The diagnostic role of fat in osteosarcopenia. J Lab Precision Med 4:7

    Article  Google Scholar 

  • Bandet CL, Tan-Chen S, Bourron O, Le Stunff H, Hajduch E (2019) Sphingolipid metabolism: new insight into ceramide-induced lipotoxicity in muscle cells. Int J Mol Sci 20(3):479

    Article  CAS  PubMed Central  Google Scholar 

  • Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, Hochberg MC, Ferrari SL, Blain H, Binder EF, Rolland Y, Poiraudeau S, Benson CT, Myers SL, Hu L, Ahmad QI, Pacuch KR, Gomez EV, Benichou O, STEADY Group (2015) Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol 3(12):948–957

    Article  CAS  PubMed  Google Scholar 

  • Bermeo S, Gunaratnam K, Duque G (2014) Fat and bone interactions. Curr Osteoporos Rep 12(2):235–242

    Article  PubMed  Google Scholar 

  • Bermeo S, Al Saedi A, Vidal C, Khalil M, Pang M, Troen BR, Myers D, Duque G (2019) Treatment with an inhibitor of fatty acid synthase attenuates bone loss in ovariectomized mice. Bone 122:114–122

    Article  CAS  PubMed  Google Scholar 

  • Bevier WC, Wiswell RA, Pyka G, Kozak KC, Newhall KM, Marcus R (1989) Relationship of body composition, muscle strength, and aerobic capacity to bone mineral density in older men and women. J Bone Miner Res 4(3):421–432

    Article  CAS  PubMed  Google Scholar 

  • Birbrair A, Frenette PS (2016) Niche heterogeneity in the bone marrow. Ann N Y Acad Sci 1370(1):82–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Øvervatn A et al (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boden G, Lebed B, Schatz M, Homko C, Lemieux S (2001) Effects of acute changes of plasma free fatty acids on Intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50(7):1612–1617

    Article  CAS  PubMed  Google Scholar 

  • Bonsett CA, Rudman A (1984) Duchenne’s muscular dystrophy: a tissue culture perspective. Indiana Med 77(6):446–449

    CAS  PubMed  Google Scholar 

  • Bonsett CA, Rudman A (1994) ‘Oil globules’ in Duchenne muscular dystrophy--history, demonstration, and metabolic significance. Med Hypotheses 43(5):327–338

    Article  CAS  PubMed  Google Scholar 

  • Bonsett CA, Rudman A, Elliott AY (1979) Intracellular lipid in pseudohypertrophic muscular dystrophy tissue culture. J Indiana State Med Assoc 72(3):184–187

    CAS  PubMed  Google Scholar 

  • Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE et al (2012) The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A 109(35):14170–14175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bosma M (2016) Lipid droplet dynamics in skeletal muscle. Exp Cell Res 340(2):180–186

    Article  CAS  PubMed  Google Scholar 

  • Bouchard DR, Janssen I (2010) Dynapenic-obesity and physical function in older adults. J Gerontol A Biol Sci Med Sci 65(1):71–77

    Article  PubMed  Google Scholar 

  • Brons C, Grunnet LG (2017) Skeletal muscle lipotoxicity in insulin resistance and type 2 diabetes: a causal mechanism or an innocent bystander? Eur J Endocrinol 176(2):R67–r78

    Article  PubMed  CAS  Google Scholar 

  • Brookheart RT, Michel CI, Schaffer JE (2009) As a matter of fat. Cell Metab 10(1):9–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budui SL, Rossi AP, Zamboni M (2015) The pathogenetic bases of sarcopenia. Clin Cases Miner Bone Metab 12(1):22–26

    PubMed  PubMed Central  Google Scholar 

  • Campbell TL, Mitchell AS, McMillan EM, Bloemberg D, Pavlov D, Messa I et al (2015) High-fat feeding does not induce an autophagic or apoptotic phenotype in female rat skeletal muscle. Exp Biol Med (Maywood) 240(5):657–668

    Article  CAS  Google Scholar 

  • Carobbio S, Pellegrinelli V, Vidal-Puig A (2017) Adipose tissue function and expandability as determinants of lipotoxicity and the metabolic syndrome. Adv Exp Med Biol 960:161–196

    Article  CAS  PubMed  Google Scholar 

  • Carroll JE, Norris BJ, Brooke MH (1985) Defective [U-14 C] palmitic acid oxidation in Duchenne muscular dystrophy. Neurology 35(1):96–97

    Article  CAS  PubMed  Google Scholar 

  • Cawthon PM, Fox KM, Gandra SR, Delmonico MJ, Chiou CF, Anthony MS et al (2009) Do muscle mass, muscle density, strength, and physical function similarly influence risk of hospitalization in older adults? J Am Geriatr Soc 57(8):1411–1419

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang Y-C, Liu H-W, Chen Y-T, Chen Y-A, Chen Y-J, Chang S-J (2018) Resveratrol protects muscle cells against palmitate-induced cellular senescence and insulin resistance through ameliorating autophagic flux. J Food Drug Anal 26(3):1066–1074

    Article  CAS  PubMed  Google Scholar 

  • Choi JW, Ohn JH, Jung HS, Park YJ, Jang HC, Chung SS et al (2018) Carnitine induces autophagy and restores high-fat diet-induced mitochondrial dysfunction. Metab Clin Exp 78:43–51

    Article  CAS  PubMed  Google Scholar 

  • Chung YH, Jang Y, Choi B, Song DH, Lee EJ, Kim SM et al (2014) Beclin-1 is required for RANKL-induced osteoclast differentiation. J Cell Physiol 229(12):1963–1971

    Article  CAS  PubMed  Google Scholar 

  • Clark BC, Manini TM (2012) What is dynapenia? Nutrition (Burbank, Los Angeles County, Calif) 28(5):495–503

    Article  Google Scholar 

  • Coen PM, Goodpaster BH (2012) Role of intramyocelluar lipids in human health. Trends Endocrinol Metab 23(8):391–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124(Pt 7):991–998

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  • Cuervo AM (2008) Autophagy and aging: keeping that old broom working. Trends Genet : TIG 24(12):604–612

    Article  CAS  PubMed  Google Scholar 

  • Curtis E, Litwic A, Cooper C, Dennison E (2015) Determinants of muscle and bone aging. J Cell Physiol 230(11):2618–2625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daroszewska A, van ‘t Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L et al (2011) A point mutation in the ubiquitin-associated domain of SQSMT1 is sufficient to cause a Paget’s disease-like disorder in mice. Hum Mol Genet 20(14):2734–2744

    Article  CAS  PubMed  Google Scholar 

  • De Stefanis D, Mastrocola R, Nigro D, Costelli P, Aragno M (2017) Effects of chronic sugar consumption on lipid accumulation and autophagy in the skeletal muscle. Eur J Nutr 56(1):363–373

    Article  PubMed  CAS  Google Scholar 

  • DeFronzo RA, Tripathy D (2009) Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32(Suppl 2):S157–S163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90(6):1579–1585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demontiero O, Boersma D, Suriyaarachchi P, Duque G (2014) Clinical outcomes of impaired muscle and bone interactions. Crit Rev Bone Miner Metab 12(2):86–92

    Article  Google Scholar 

  • Deshimaru R, Ishitani K, Makita K, Horiguchi F, Nozawa S (2005) Analysis of fatty acid composition in human bone marrow aspirates. Keio J Med 54(3):150–155

    Article  CAS  PubMed  Google Scholar 

  • Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM et al (2014) Grip strength across the life course: normative data from twelve British studies. PLoS One 9(12):e113637

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dong X, Bi L, He S, Meng G, Wei B, Jia S et al (2014) FFAs-ROS-ERK/P38 pathway plays a key role in adipocyte lipotoxicity on osteoblasts in co-culture. Biochimie 101:123–131

    Article  CAS  PubMed  Google Scholar 

  • Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28(5):895–899

    Article  PubMed  Google Scholar 

  • Drosatos K, Schulze PC (2013) Cardiac lipotoxicity: molecular pathways and therapeutic implications. Curr Heart Fail Rep 10(2):109–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duchenne G-B (1861) De l’électrisation localisée et de son application à la pathologie. Baillière, Paris

    Google Scholar 

  • Elbaz A, Wu X, Rivas D, Gimble JM, Duque G (2010) Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med 14(4):982–991

    Article  CAS  PubMed  Google Scholar 

  • Ertunc ME, Hotamisligil GS (2016) Lipid signaling and lipotoxicity in metaflammation: indications for metabolic disease pathogenesis and treatment. J Lipid Res 57(12):2099–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng W, Liu B, Liu D, Hasegawa T, Wang W, Han X et al (2016) Long-term Administration of High-fat Diet Corrects Abnormal Bone Remodeling in the tibiae of Interleukin-6-deficient mice. J Histochem Cytochem 64(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74(1):49–94

    Article  CAS  PubMed  Google Scholar 

  • Ganley IG, Lam du H, Wang J, Ding X, Chen S, Jiang X (2009) ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 284(18):12297–12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gasparrini M, Rivas D, Elbaz A, Duque G (2009) Differential expression of cytokines in subcutaneous and marrow fat of aging C57BL/6J mice. Exp Gerontol 44(9):613–618

    Article  CAS  PubMed  Google Scholar 

  • Gimble JM, Nuttall ME (2012) The relationship between adipose tissue and bone metabolism. Clin Biochem 45(12):874–879

    Article  CAS  PubMed  Google Scholar 

  • Gofman JW, Lindgren FT, Elliott H (1949) Ultracentrifugal studies of lipoproteins of human serum. J Biol Chem 179(2):973–979

    CAS  PubMed  Google Scholar 

  • Goodpaster BH, Theriault R, Watkins SC, Kelley DE (2000) Intramuscular lipid content is increased in obesity and decreased by weight loss. Metab Clin Exp 49(4):467–472

    Article  CAS  PubMed  Google Scholar 

  • Griffith JF, Yeung DK, Ahuja AT, Choy CW, Mei WY, Lam SS et al (2009) A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone 44(6):1092–1096

    Article  CAS  PubMed  Google Scholar 

  • Guerra DAP, Paiva AE, Sena IFG, Azevedo PO, Batista ML Jr, Mintz A et al (2018) Adipocytes role in the bone marrow niche. Cytometry Part A 93(2):167–171

    Article  Google Scholar 

  • Gueugneau M, Coudy-Gandilhon C, Theron L, Meunier B, Barboiron C, Combaret L et al (2015) Skeletal muscle lipid content and oxidative activity in relation to muscle fiber type in aging and metabolic syndrome. J Gerontol A Biol Sci Med Sci 70(5):566–576

    Article  CAS  PubMed  Google Scholar 

  • Gunaratnam K, Vidal C, Boadle R, Thekkedam C, Duque G (2013) Mechanisms of palmitate-induced cell death in human osteoblasts. Biology 2(12):1382–1389

    Google Scholar 

  • Gunaratnam K, Vidal C, Gimble JM, Duque G (2014) Mechanisms of palmitate-induced lipotoxicity in human osteoblasts. Endocrinology 155(1):108–116

    Article  PubMed  CAS  Google Scholar 

  • Halachmi D, Eilam Y (1993) Calcium homeostasis in yeast cells exposed to high concentrations of calcium. Roles of vacuolar H(+)-ATPase and cellular ATP. FEBS Lett 316(1):73–78

    Article  CAS  PubMed  Google Scholar 

  • Hassan EB, Duque G (2017) Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician 46(11):849–853

    PubMed  Google Scholar 

  • Havel RJ, Eder HA, Bragdon JH (1955) The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34(9):1345–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and oxidative enzyme activity in relation to muscle fiber type in type 2 diabetes and obesity. Diabetes 50(4):817–823

    Article  CAS  PubMed  Google Scholar 

  • He C, Bassik MC, Moresi V, Sun K, Wei Y, Zou Z et al (2012) Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 481(7382):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hilton TN, Tuttle LJ, Bohnert KL, Mueller MJ, Sinacore DR (2008) Excessive adipose tissue infiltration in skeletal muscle in individuals with obesity, diabetes mellitus, and peripheral neuropathy: association with performance and function. Phys Ther 88(11):1336–1344

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirschfeld HP, Kinsella R, Duque G (2017) Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 28(10):2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Horowitz MC, Berry R, Holtrup B, Sebo Z, Nelson T, Fretz JA et al (2017) Bone marrow adipocytes. Adipocytes 6(3):193–204

    Article  CAS  Google Scholar 

  • Hosokawa N, Sasaki T, Iemura S, Natsume T, Hara T, Mizushima N (2009) Atg101, a novel mammalian autophagy protein interacting with Atg13. Autophagy 5(7):973–979

    Article  CAS  PubMed  Google Scholar 

  • Hou J, Han ZP, Jing YY, Yang X, Zhang SS, Sun K et al (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:e844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60

    Article  CAS  PubMed  Google Scholar 

  • Jilka RL, O’Brien CA (2016) The role of osteocytes in age-related bone loss. Curr Osteoporos Rep 14(1):16–25

    Article  PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al (2009) ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20(7):1992–2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalyani RR, Rodriguez DC, Yeh HC, Golden SH, Thorpe RJ Jr (2015) Diabetes, race, and functional limitations in older U.S. men and women. Diabetes Res Clin Pract 108(3):390–397

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116(5):687–695

    Article  CAS  PubMed  Google Scholar 

  • Kim JE, Ahn MW, Baek SH, Lee IK, Kim YW, Kim JY et al (2008) AMPK activator, AICAR, inhibits palmitate-induced apoptosis in osteoblast. Bone 43(2):394–404

    Article  CAS  PubMed  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2010a) Altered lipid content inhibits autophagic vesicular fusion. FASEB J 24(8):3052–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2010b) Inhibitory effect of intracellular lipid load on macroautophagy. Autophagy 6(6):825–827

    Article  PubMed  Google Scholar 

  • Komatsu M, Waguri S, Koike M, Y-s S, Ueno T, Hara T et al (2007) Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131(6):1149–1163

    Article  CAS  PubMed  Google Scholar 

  • Kusminski CM, Shetty S, Orci L, Unger RH, Scherer PE (2009) Diabetes and apoptosis: lipotoxicity. Apoptosis 14(12):1484–1495

    Article  CAS  PubMed  Google Scholar 

  • Lang T, Cauley JA, Tylavsky F, Bauer D, Cummings S, Harris TB (2010) Computed tomographic measurements of thigh muscle cross-sectional area and attenuation coefficient predict hip fracture: the health, aging, and body composition study. J Bone Miner Res 25(3):513–519

    Article  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477

    Article  CAS  PubMed  Google Scholar 

  • Li RF, Chen G, Ren JG, Zhang W, Wu ZX, Liu B et al (2014) The adaptor protein p62 is involved in RANKL-induced autophagy and osteoclastogenesis. J Histochem Cytochem 62(12):879–888

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li H, Liu S, Yuan H, Niu Y, Fu L (2017) Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res 354(1):18–24

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Hudson AJ, Strickland KP (1972) Fatty acid oxidation by skeletal muscle mithochondria in duchenne dystrophy. Life Sci 11(7, Part 2):355–362

    Article  CAS  Google Scholar 

  • Liu Y, Palanivel R, Rai E, Park M, Gabor TV, Scheid MP et al (2015) Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 64(1):36–48

    Article  CAS  PubMed  Google Scholar 

  • Machebouef M (1929) Researches sur les phosphoaminolipides et les sterides due serum et du plasma sanguins I&II. Soc Chim Biol 11:268–293

    Google Scholar 

  • Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S (2011) Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol 174(3):527–535

    Article  CAS  PubMed  Google Scholar 

  • Manolagas SC, Parfitt AM (2010) What old means to bone. Trends Endocrinol Metab 21(6):369–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maridas DE, Rendina-Ruedy E, Helderman RC, DeMambro VE, Brooks D, Guntur AR et al (2018) Progenitor recruitment and adipogenic lipolysis contribute to the anabolic actions of parathyroid hormone on the skeleton. FASEB J 33:2885–2898

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin LM, Jeyabalan N, Tripathi R, Panigrahi T, Johnson PJ, Ghosh A et al (2019) Autophagy in corneal health and disease: a concise review. Ocul Surf 17:186–197

    Article  PubMed  Google Scholar 

  • Marzetti E, Calvani R, Bernabei R, Leeuwenburgh C (2012) Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology 58(2):99–106

    Article  CAS  PubMed  Google Scholar 

  • Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M et al (2009) Autophagy is required to maintain muscle mass. Cell Metab 10(6):507–515

    Article  CAS  PubMed  Google Scholar 

  • Mattiucci D, Maurizi G, Izzi V, Cenci L, Ciarlantini M, Mancini S et al (2018) Bone marrow adipocytes support hematopoietic stem cell survival. J Cell Physiol 233(2):1500–1511

    Article  CAS  PubMed  Google Scholar 

  • Meryon E (1852) On granular and fatty degeneration of the voluntary muscles. Medico-Chir Trans 35(1):73–84

    Article  CAS  Google Scholar 

  • Messier V, Rabasa-Lhoret R, Barbat-Artigas S, Elisha B, Karelis AD, Aubertin-Leheudre M (2011) Menopause and sarcopenia: a potential role for sex hormones. Maturitas 68(4):331–336

    Article  CAS  PubMed  Google Scholar 

  • Morales PE, Bucarey JL, Espinosa A (2017) Muscle lipid metabolism: role of lipid droplets and Perilipins. J Diabetes Res 2017:10

    Article  CAS  Google Scholar 

  • Nehlin JO, Just M, Rustan AC, Gaster M (2011) Human myotubes from myoblast cultures undergoing senescence exhibit defects in glucose and lipid metabolism. Biogerontology 12(4):349–365

    Article  CAS  PubMed  Google Scholar 

  • Nielsen RH, Karsdal MA, Sorensen MG, Dziegiel MH, Henriksen K (2007) Dissolution of the inorganic phase of bone leading to release of calcium regulates osteoclast survival. Biochem Biophys Res Commun 360(4):834–839

    Article  CAS  PubMed  Google Scholar 

  • Nollet M, Santucci-Darmanin S, Breuil V, Al-Sahlanee R, Cros C, Topi M et al (2014) Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy 10(11):1965–1977

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nuschke A, Rodrigues M, Stolz DB, Chu CT, Griffith L, Wells A (2014) Human mesenchymal stem cells/multipotent stromal cells consume accumulated autophagosomes early in differentiation. Stem Cell Res Ther 5(6):140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pasiakos SM, Vislocky LM, Carbone JW, Altieri N, Konopelski K, Freake HC et al (2010) Acute energy deprivation affects skeletal muscle protein synthesis and associated intracellular signaling proteins in physically active adults. J Nutr 140(4):745–751

    Article  CAS  PubMed  Google Scholar 

  • Pinto X, Garcia Gomez MC (2016) New agents for hypercholesterolemia. Med Clin 146(4):172–177

    Article  Google Scholar 

  • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ et al (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4):506–522

    Article  CAS  PubMed  Google Scholar 

  • Pugh TD, Conklin MW, Evans TD, Polewski MA, Barbian HJ, Pass R et al (2013) A shift in energy metabolism anticipates the onset of sarcopenia in rhesus monkeys. Aging Cell 12(4):672–681

    Article  CAS  PubMed  Google Scholar 

  • Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N et al (2008) Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet 17(24):3897–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet (London, England) 1(7285):785–789

    Article  CAS  Google Scholar 

  • Rendina-Ruedy E, Guntur AR, Rosen CJ (2017) Intracellular lipid droplets support osteoblast function. Adipocytes 6(3):250–258

    Article  CAS  Google Scholar 

  • Rosa-Caldwell ME, Brown JL, Lee DE, Blackwell TA, Turner KW, Brown LA et al (2017) Autophagy activation, not peroxisome proliferator-activated receptor γ coactivator 1α, may mediate exercise-induced improvements in glucose handling during diet-induced obesity. Exp Physiol 102(9):1194–1207

    Article  CAS  PubMed  Google Scholar 

  • Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19(2):109–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryten M, Dunn PM, Neary JT, Burnstock G (2002) ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J Cell Biol 158(2):345–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagar T, Rantlha M, Kruger MC, Coetzee M, Deepak V (2016) Ferulic acid impairs osteoclast fusion and exacerbates survival of mature osteoclasts. Cytotechnology 68(5):1963–1972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandri M (2010) Autophagy in skeletal muscle. FEBS Lett 584(7):1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Schenkel LC, Bakovic M (2014) Palmitic acid and oleic acid differentially regulate choline transporter-like 1 levels and Glycerolipid metabolism in skeletal muscle cells. Lipids 49(8):731–744

    Article  CAS  PubMed  Google Scholar 

  • Scott D, Sanders KM, Aitken D, Hayes A, Ebeling PR, Jones G (2014) Sarcopenic obesity and dynapenic obesity: 5-year associations with falls risk in middle-aged and older adults. Obesity 22(6):1568–1574

    Article  PubMed  Google Scholar 

  • Scott D, Chandrasekara SD, Laslett LL, Cicuttini F, Ebeling PR, Jones G (2016) Associations of Sarcopenic obesity and Dynapenic obesity with bone mineral density and incident fractures over 5–10 years in community-dwelling older adults. Calcif Tissue Int 99(1):30–42

    Article  CAS  PubMed  Google Scholar 

  • Scott D, Shore-Lorenti C, McMillan L, Mesinovic J, Clark RA, Hayes A et al (2018) Associations of components of sarcopenic obesity with bone health and balance in older adults. Arch Gerontol Geriatr 75:125–131

    Article  PubMed  Google Scholar 

  • Seessle J, Liebisch G, Schmitz G, Stremmel W, Chamulitrat W (2015) Palmitate activation by fatty acid transport protein 4 as a model system for hepatocellular apoptosis and steatosis. Biochim Biophys Acta 1851(5):549–565

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Zhang T, Liang X, Hu Q, Huang J, Zhou Y et al (2015) Dihydromyricetin improves skeletal muscle insulin resistance by inducing autophagy via the AMPK signaling pathway. Mol Cell Endocrinol 409:92–102

    Article  CAS  PubMed  Google Scholar 

  • Shumate JB, Carroll JE, Brooke MH, Choksi RM (1982) Palmitate oxidation in human muscle: comparison to CPT and carnitine. Muscle Nerve 5(3):226–231

    Article  CAS  PubMed  Google Scholar 

  • Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M et al (2009) Autophagy regulates lipid metabolism. Nature 458:1131–1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh L, Tyagi S, Myers D, Duque G (2018) Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep 16(2):130–137

    Article  PubMed  Google Scholar 

  • Sinha R, Dufour S, Petersen KF, LeBon V, Enoksson S, Ma YZ et al (2002) Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes 51(4):1022–1027

    Article  CAS  PubMed  Google Scholar 

  • Song C, Song C, Tong F (2014) Autophagy induction is a survival response against oxidative stress in bone marrow-derived mesenchymal stromal cells. Cytotherapy 16(10):1361–1370

    Article  CAS  PubMed  Google Scholar 

  • Stratford S, Hoehn KL, Liu F, Summers SA (2004) Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J Biol Chem 279(35):36608–36615

    Article  CAS  PubMed  Google Scholar 

  • Takada K, Inaba M, Ichioka N, Ueda Y, Taira M, Baba S et al (2006) Treatment of senile osteoporosis in SAMP6 mice by intra-bone marrow injection of allogeneic bone marrow cells. Stem cells (Dayton, Ohio) 24(2):399–405

    Article  Google Scholar 

  • Tong J, Li W, Vidal C, Yeo LS, Fatkin D, Duque G (2011) Lamin a/C deficiency is associated with fat infiltration of muscle and bone. Mech Ageing Dev 132(11–12):552–559

    Article  CAS  PubMed  Google Scholar 

  • Turpin SM, Ryall JG, Southgate R, Darby I, Hevener AL, Febbraio MA et al (2009) Examination of ‘lipotoxicity’ in skeletal muscle of high-fat fed and ob/ob mice. J Physiol 587(7):1593–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM et al (2014) Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20(4):678–686

    Article  CAS  PubMed  Google Scholar 

  • Unger RH (2003) The physiology of cellular liporegulation. Annu Rev Physiol 65:333–347

    Article  CAS  PubMed  Google Scholar 

  • Unger RH, Orci L (2002) Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta 1585(2–3):202–212

    Article  CAS  PubMed  Google Scholar 

  • Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ (2002) Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol 55(9):693–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstein RS, Manolagas SC (2000) Apoptosis and osteoporosis. Am J Med 108(2):153–164

    Article  CAS  PubMed  Google Scholar 

  • Woodworth-Hobbs ME, Hudson MB, Rahnert JA, Zheng B, Franch HA, Price SR (2014) Docosahexaenoic acid prevents palmitate-induced activation of proteolytic systems in C2C12 myotubes. J Nutr Biochem 25(8):868–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woodworth-Hobbs ME, Perry BD, Rahnert JA, Hudson MB, Zheng B, Russ Price S (2017) Docosahexaenoic acid counteracts palmitate-induced endoplasmic reticulum stress in C2C12 myotubes: impact on muscle atrophy. Phys Rep 5(23):e13530

    Article  CAS  Google Scholar 

  • Xiong J, Onal M, Jilka RL, Weinstein RS, Manolagas SC, O’Brien CA (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17(10):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zheng X, Li B, Jiang S, Jiang L (2014) Increased activity of osteocyte autophagy in ovariectomized rats and its correlation with oxidative stress status and bone loss. Biochem Biophys Res Commun 451(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Ye R, Onodera T, Scherer PE (2019) Lipotoxicity and beta cell maintenance in obesity and type 2 diabetes. J Endocr Soc 3(3):617–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zahm AM, Bohensky J, Adams CS, Shapiro IM, Srinivas V (2011) Bone cell autophagy is regulated by environmental factors. Cells Tissues Organs 194(2–4):274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Li H, Liu J, Xu L, Guo Q, Zang W et al (2016) Autophagic dysfunction is improved by intermittent administration of osteocalcin in obese mice. Int J Obes 40:833–843

    Article  CAS  Google Scholar 

  • Zlobine I, Gopal K, Ussher JR (2016) Lipotoxicity in obesity and diabetes-related cardiac dysfunction. Biochim Biophys Acta 1861(10):1555–1568

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Duque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al Saedi, A., Goodman, C.A., Myers, D.E., Hayes, A., Duque, G. (2019). Osteosarcopenia as a Lipotoxic Disease. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_6

Download citation

Publish with us

Policies and ethics