Skip to main content

Philosophy of Notation in the 19th Century. Peirce, Husserl, and All the Others on Inclusion and Assertion

  • Chapter
  • First Online:
Peirce and Husserl: Mutual Insights on Logic, Mathematics and Cognition

Part of the book series: Logic, Epistemology, and the Unity of Science ((LEUS,volume 46))

Abstract

This paper focuses on two important notational devices that were embedded in Husserl’s and Peirce’s notations, the sign of inclusion and the sign of assertion. Husserl first criticizes, then follows Schröder in taking inclusion to be a simpler concept than equality, and endows his logical notation with a sign of inclusion. This was due to Peirce’s notational innovations and arguments, by which Husserl is indirectly influenced through of Schröder. Further, like Frege Husserl endows his notation with a sign of assertion, claiming that without some such sign it would be impossible to distinguish the assertion of a propositional content from its occurrence unasserted in some larger propositional context. Against this idea of Frege and Husserl, Peirce had a powerful argument—the compositional structure of a formula is de facto the sign of its assertion—, and Peirce’s algebraical and graphical notations can be seen as notational realizations of this principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Centrone (2010, pp. 128–147).

  2. 2.

    Stjernfelt (2007, 2014), Pietarinen and Stjernfelt (2015).

  3. 3.

    The expression “philosophy of notation” was coined by Peirce to indicate the philosophical investigation of the properties of logical notations; cf. Peirce (1885).

  4. 4.

    Boole’s approach was based on equation. In The Laws of Thought he divided propositions into Primary, which relate to things, and Secondary, which relate to propositions, a distinction “nearly but not quite” co-extensive with that between categorical and hypothetical propositions. The propositions “The sun shines” and “The earth is warmed” are primary, the proposition “If the sun shines, the earth is warmed” is secondary. Both primary and secondary propositions can be symbolized in the same notation and subjected to the same laws. The difference between the two cases is only a difference in interpretation (as logic of classes or logic of propositions). Both kinds of proposition are expressed by an equation, symbolized in the notation by the sign “=” (Boole 1854, IV, 1, 53–54). Jevons had followed Boole in considering equation the “fundamental form of reasoning” (Jevons 1869, 14).

  5. 5.

    Cf. Brady (2000, p. 145).

  6. 6.

    “Die Formel sagt nämlich als disjunktives Urteil aus: wenn A ⊆ B ist, so ist entweder A untergeordnet B; oder aber […] es ist A gleich B” (1891, 109). In formulas: A =(= B = {A ⊂ B} + {A = B}.

  7. 7.

    “Wenn a ⋹ b und zugleich b ⋹ a ist, so werde gesagt, es sei: a = b (gelesen a gleich b).”

  8. 8.

    Cf. Peckhaus (1990, p. 181), Brady (2000, p. 145), Grattan-Guiness (2000, p. 165).

  9. 9.

    Since Leibniz and Kant, the rule that “the greater the extension, the less the comprehension” was daily bread of logicians; we find it in Hamilton, Jevons, and many others. But for Peirce, the law only holds in a definite state of information; whenever we come to any new piece of knowledge of whatever kind, the state of information is altered, and the law of inverse proportionality does not hold anymore. See W1, 275 and Bellucci (2015b).

  10. 10.

    The properties of the fundamental relative of quantity are “first, that it is transitive; second, that everything in the system is q of itself, and, third, that nothing is both q of and q’d by anything except itself. The objects of a system having a fundamental relation of quantity are called quantities, and the system is called a system of quantity” (W4, 299–300). See also “The Logic of Quantity,” MSS 13–17.

  11. 11.

    On Peirce’s 1881 axiomatization of arithmetic and its centrality in his later thought see Shields (2012).

  12. 12.

    Cf. MS 408, 121, 142 (1894); MS 594, 62–63 (1894); MS 441 (1898); see also Bellucci (2016).

  13. 13.

    Cf. Dipert (1981).

  14. 14.

    “Die Subsumption soll die ‘einfachere,’ ‘ursprünglichere’ Beziehung sein; sie drücke nur einen Gedanken aus, jene anderen aber deren zwei. a =(= b drücke nämlich aus: Alle a sind b. Dagegen z.B. a  = b: Alle a sind b und alle b sind a usw. Aber all dies ist offenbar unrichtig. Schröder verwechselt beständig die sprachlichen Ausdrücke der Klassenurteile mit denen ihrer äquivalenten Inhaltsurteile. Halt man sich nur exakt an den wirklichen Inhalt der Zeichen, dann ist von jeder Behauptung des Verf. genau das Gegenteil wahr. a = b besagt z.B., die Klasse a ist gleich der Klasse b, a =(= b hingegen, die Klasse a ist untergeordnet oder gleich der Klasse b. Die Subsumptionsbeziehung ist also, wie das Zeichen es exakt ausdrückt, die aus Gleichheit und Subordination zusammengesetzte, und diese daher die ‚ursprünglichere.’ Lage hierin wirklich ein Argument, so müssten wir vielmehr diese Beziehungen für den Aufbau des Kalküls bevorzugen.”

  15. 15.

    “Je zwei Sätze können, was immer ihr sonstiger Gehalt sei, zu einem neuen Satz konjunktiv verbunden werden, z.B. ‘Gott ist gerecht, und die Bösen werden bestraft’. Diese Verbindung wollen wir durch Nebeneinanderschreiben der Buchstaben bezeichnen. AB bedeutet also, wenn wir die Großbuchstaben als Zeichen irgendwelcher einzelner Sätze nehmen, die konjunktive Verknüpfung des Satzes A und des Satzes B; zu lesen: A und B. Ebenso bezeichnen wir durch A + B die disjunktive Verknüpfung; das Zeichen ist also zu lesen als: A oder B” (1896, 253). Cf. Husserl (1902, 239).

  16. 16.

    “Eine dritte elementare Weise, aus zwei Sätzen einen zu bilden, ist die hypothetische: Wenn A, so B. Aber diese Verbindungsweise repräsentiert zugleich die Grundform der Beziehungzwischen Sätzen. Die Gültigkeit von A zieht die von B nach sich, und damit sind beide Sätze in ein Verhältnis gebracht, aus dem für jeden eigentümlich relative Beschaffenheiten entspringen: Grund zu sein und Folge zu sein. Dieses fundamentale Verhältnis bezeichnen wir so: €. Den wichtigen Fall, wo A € B und zugleich B € A, bezeichnen wir durch A = B” (1896, 253).

  17. 17.

    See Cajori (1929, 385–390) and Bellucci and Pietarinen (2016).

  18. 18.

    See Baker and Hacker (1984, 99).

  19. 19.

    See again Backer and Hacker (1984, 85).

  20. 20.

    Cf. “the assertoric force of a sentence is thus shown by its not being enclosed in the context of a longer sentence” (Geach 1965, 456); “[t]he correct employment of these symbols makes clear, for example, that the content of the antecedent of a conditional is not asserted, even though the content of the conditional as a whole is” (Baker & Hacker 1984, 84).

  21. 21.

    See Roberts (1973), Pietarinen (2011, 2015).

  22. 22.

    See MS 253, 8–9, 1905; MS 646, 19, 1910; MS 670, 11–12, 1911; see also Bellucci (2015a) and Bellucci and Pietarinen (2016).

References

  • Baker, G. P., & Hacker, P. M. S. (1984). Frege. Logical Excavations. New York: Oxford University Press.

    Google Scholar 

  • Bellucci, F. (2015a). Peirce e Wittgenstein su parentesi e altri segni. Versus. Quaderni di studi semiotici, 120, 121–134.

    Google Scholar 

  • Bellucci, F. (2015b). Neat, swine, sheep, and deer. Mill and Peirce on natural kinds. British Journal for the History of Philosophy, 23(5), 911–932.

    Article  Google Scholar 

  • Bellucci, F. (2016). Charles S. Peirce and the medieval doctrine of consequentiae. History and Philosophy of Logic, 37(3), 244–268.

    Article  Google Scholar 

  • Bellucci, F., & Pietarinen, A.-V. (2016). Existential graphs as an instrument of logical analysis. Part I: Alpha. The Review of Symbolic Logic, 9(2), 209–237.

    Article  Google Scholar 

  • Boole, G. (1854). An investigation of the laws of thought. London: Macmillan.

    Google Scholar 

  • Brady, G. (2000). From Peirce to Skolem: A neglected chapter in the history of logic. Amsterdam: Elsevier.

    Google Scholar 

  • Cajori, F. (1929). A history of mathematical notations (Vol. 1). Chicago: Open Court.

    Google Scholar 

  • Centrone, S. (2010). Logic and philosophy of mathematics in the early Husserl. Dordrecht: Springer.

    Book  Google Scholar 

  • Dipert, R. (1981). Peirce’s propositional logic. The Review of Metaphysics, 34(3), 569–595.

    Google Scholar 

  • Frege, G. (1991). Collected papers on mathematics, logic, and philosophy. Ed. by B. McGuinnes. Oxford: Blackwell.

    Google Scholar 

  • Geach, P. (1965). Assertion. Philosophical Review, 74(4), 449–465.

    Article  Google Scholar 

  • Grattan-Guinnes, I. (2000). The search for mathematical roots, 1870–1940. Princeton: Princeton University Press.

    Google Scholar 

  • Husserl, E. (1896). Logik. Vorlesung 1896 (Husserliana, Materialienbände I). Ed. by E. Schuhmann. Dordrecht: Springer, 2001.

    Google Scholar 

  • Husserl, E. (1902). Logik. Vorlesung 1902/1903 (Husserliana, Materialienbände II). Ed. by E. Schuhmann. Dordrecht: Springer, 2001.

    Google Scholar 

  • Husserl, E. (1994). Early writings in the philosophy of logic and mathematics. Trans. D. Willard. Dordrecht: Springer.

    Google Scholar 

  • Jevons, S. (1869). The substitution of similars. London: Macmillan.

    Google Scholar 

  • Peano, G. (1958). Opere scelte. Volume II. Logica matematica. Interlingua ed algebra della grammatica. Roma: Edizioni Cremonese.

    Google Scholar 

  • Peckhaus, V. (1990). Ernst Schröder und die “pasigraphischen Systeme” von Peano und Peirce. Modern Logic 1 (2/3), 174–205.

    Google Scholar 

  • Peirce, C. S. (1870). Description of a notation for the logic of relatives. Memoirs of the American Academy of Arts and Sciences 9(2), 317–378. Now in W2, 359–429.

    Google Scholar 

  • Peirce, C. S. (1880). On the algebra of logic. American Journal of Mathematics 3(1), 15–57. Now in W4, 163–209.

    Article  Google Scholar 

  • Peirce, C. S. (1885). On the algebra of logic. A contribution to the philosophy of notation. American Journal of Mathematics 7(2), 180–196. Now in W5, 162–190.

    Article  Google Scholar 

  • Peirce, C. S. (1967). Manuscripts in the Houghton Library of Harvard University, as identified by Richard Robin, Annotated Catalogue of the Papers of Charles S. Peirce, Amherst: University of Massachusetts Press, 1967, and in The Peirce Papers: A supplementary catalogue, Transactions of the C. S. Peirce Society 7 (1971): 37–57. Cited as MS followed by manuscript number and, when available, page number.

    Google Scholar 

  • Peirce, C. S. (1982). Writings of Charles S. Peirce: A chronological edition, 7 vols., ed. by. E. Moore, C. Kloesel et al. Bloomington: Indiana University Press. Cited as W followed by volume and page number.

    Google Scholar 

  • Pietarinen, A.-V. (2011). Existential graphs: What a diagrammatic logic of cognition might look like. History and Philosophy of Logic, 32(3), 265–281.

    Article  Google Scholar 

  • Pietarinen, A.-V. (2015). Exploring the beta quadrant. Synthese, 192(4), 941–970.

    Article  Google Scholar 

  • Pietarinen, A.-V., & Stjernfelt, F. (2015). Peirce and diagrams: two contributors to an actual discussion review each other. Synthese, 192(4), 1073–1088.

    Article  Google Scholar 

  • Roberts, D. D. (1973). The existential graphs of Charles S. Peirce. The Hague: Mouton.

    Google Scholar 

  • Shields, P. (2012). Charles S. Peirce on the logic of number. Boston: Docent Press (orig. diss. Fordham, 1981).

    Google Scholar 

  • Schröder, E. (1890). Vorlesungen über die Algebra der Logik (Exakte Logik), Bd. 1, Leipzig.

    Google Scholar 

  • Schröder, E. (1891). Vorlesungen über die Algebra der Logik (Exakte Logik), Bd. 2, Tl. 1, Leipzig.

    Google Scholar 

  • Schröder, E. (1892). Signs and symbols. The Open Court VI.47(274), 3463–3466.

    Google Scholar 

  • Stjernfelt, F. (2007). Diagrammatology. An investigation on the borderlines of phenomenology, ontology, and semiotics. Dordrecht: Springer.

    Google Scholar 

  • Stjernfelt, F. (2014). Natural propositions. Boston: Docent Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Bellucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bellucci, F. (2019). Philosophy of Notation in the 19th Century. Peirce, Husserl, and All the Others on Inclusion and Assertion. In: Shafiei, M., Pietarinen, AV. (eds) Peirce and Husserl: Mutual Insights on Logic, Mathematics and Cognition. Logic, Epistemology, and the Unity of Science, vol 46. Springer, Cham. https://doi.org/10.1007/978-3-030-25800-9_4

Download citation

Publish with us

Policies and ethics