Skip to main content

Application of Artificial Intelligence Methods in Sustainable Building Design

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2019 (ICCSA 2019)

Abstract

The need to reduce energy consumption, resources, the introduction of new and ecological materials, the multiplicity of modern technologies available, and the complexity and multi-branch nature of architectural and construction projects means that designers must make complex and difficult decisions. This work presents the subject of currently available and used in the AEC industry project tools and provides an overview of the possibilities of using artificial intelligence methods and tools, such as Knowledge Based Engineering (KBE), fuzzy logic, neural networks, genetic algorithms, Monte-Carlo simulation. These methods can be used in the early design stage to improve decision making process and to optimize both the design process and the project itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haymaker, J.R.: Opportunities for AI to improve sustainable building design processes. In: AAAI 2011 Spring Symposium on Artificial Intelligence and Sustainable Design (SS-11-02) (2011)

    Google Scholar 

  2. Migilinskas, D., Popov, V., Juocevicius, V., Ustinovichius, L.: The benefits, obstacles and problems of practical BIM implementation. In: 11th International Conference on Modern Building Materials, Structures and Techniques, MBMST (2013)

    Article  Google Scholar 

  3. Czmoch, I., Pękała, A.: Traditional Design versus BIM Based Design. In: XXIII R-S-P seminar, Theoretical Foundation of Civil Engineering (23RSP) (2014)

    Google Scholar 

  4. Pietras, F., Wójcik, A.: Rozwój Building Information Modeling w Polsce. Badanie Antal. (2017). www.antal.pl

  5. Autodesk, MillwardBrown: BIM – Polska Perspektywa. Raport z Badania (2015, in polish)

    Google Scholar 

  6. Ceranic, B., Nguyen T., Callaghan C.: Shape grammar and kinetic façade shading systems: a novel approach to climate adaptive building design with a real time performance evaluation. In: International Conference Geomapplica Geomatics, Remote Sensing and Earth Observation (2018)

    Google Scholar 

  7. Atila, U., Karas, I.R., Turan, M.K., Rahmand, A.A.: Design of an intelligent individual evacuation model for high rise building fires based on neural network within the scope Of 3d GIS. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume II-2/W1, ISPRS 8th 3DGeoInfo Conference and WG II/2 Workshop, Istanbul, Turkey (2013)

    Google Scholar 

  8. Rüppel, U., Schatz, K.: Designing a BIM-based serious game for fire safety evacuation simulations. Adv. Eng. Inform. 25, 600–611 (2011)

    Article  Google Scholar 

  9. Kumar, S.: Developing an experienced-based design review application for healthcare facilities using a 3D game engine. J. Inform. Technol. Constr. (ITcon). 16 85–104 (2011). http://www.itcon.org/2011/6

  10. Gilner, E.: Wykorzystanie sztucznej inteligencji w zrównoważonym projektowaniu budynków. In: Strategie 2019 (accepted book chapter in polish). Wydawnictwo Politechniki Śląskiej (2019)

    Google Scholar 

  11. Brown, D.: Artificial intelligence for design process improvement. In: Clarkson, W.J., Eckert, C. (eds.) Design Process Improvement A Review of Current Practice, pp. 158–173. Springer, Cambridge (2004). https://doi.org/10.1007/978-1-84628-061-0_7

    Chapter  Google Scholar 

  12. Gałuszka, A., Pacholczyk, M., Bereska, D., Skrzypczyk, K.: Planning as artificial intelligence problem – short introduction and overview. In: Nawrat, A., Simek, K., Świerniak, A. (eds.) Advanced Technologies for Intelligent Systems of National Border Security, vol. 440, pp. 95–103. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31665-4_8. ISBN 978-3-642-31664-7

    Chapter  Google Scholar 

  13. Winch, G., Schneider, E.: The strategic management of architectural practice. Constr. Manag. Econ. 11(6), 467–473 (1993). https://doi.org/10.1080/01446199300000052

    Article  Google Scholar 

  14. Winch, G., Schneider, E.: Managing the knowledge-based organization: the case of architectural practice. J. Manage. Stud. 30(06), 0022–2380 (1993)

    Article  Google Scholar 

  15. Reddy, E.J., Shridhar, C., Rangadu, V.P.: Knowledge based engineering: notion, approaches and future trends. Am. J. Intell. Syst. 5(1), 1–17 (2015). https://doi.org/10.5923/j.ajis.20150501.01

    Article  Google Scholar 

  16. Singer, D., Bormann, A.: A novel knowledge-based engineering approach for infrastructure design. In: The Fourth International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Prague, Czech Republic (2015)

    Google Scholar 

  17. Flager F., Welle, B., Bansal, P., Soremekun, G., Haymaker, J.: Multidisciplinary process integration and design optimization of a classroom building. J. Inform. Technol. Constr. (ITcon) 14, 595–612 (2009). http://www.itcon.org/2009/38

  18. Estreicher, K. (młodszy): Historia sztuki w zarysie, Warszawa 1986. Państwowe Wydawnictwo Naukowe (1973)

    Google Scholar 

  19. Çekmis, A.: Fuzzy logic in architectural site planning design. In: 12th International Conference on Application of Fuzzy Systems and Soft Computing, ICAFS 2016, Vienna, Austria (2016)

    Google Scholar 

  20. Zemmouri, N., Schiller, M.E.: Application of fuzzy logic in interior daylight estimation. Rev. Energ. Ren. 8, 55–62 (2005)

    Google Scholar 

  21. Ciftcioglu, O.: Design enhancement by fuzzy logic in architecture. In: The IEEE International Conference on Fuzzy Systems, 0-7803-7810-5/03/$17.00200 03. IEEE (2003)

    Google Scholar 

  22. Ciftcioglu, O., Durmisevic, S.: Fuzzy logic in architectural design. In: 2nd International Conference in Fuzzy Logic and Technology, Leicester, United Kingdom (2001)

    Google Scholar 

  23. Caldas, L.: GENE_ARCH: an evolution-based generative design system for sustainable architecture. In: Smith, I.F.C. (ed.) EG-ICE 2006. LNCS (LNAI), vol. 4200, pp. 109–118. Springer, Heidelberg (2006). https://doi.org/10.1007/11888598_12

    Chapter  Google Scholar 

  24. Caldas, L.: Generation of energy-efficient patio houses: combining GENE_ARCH and a marrakesh medina shape grammar. In: Spring Symposium on Artificial Intelligence and Sustainable Design, AAAI 2011 (SS-11-02) (2011)

    Google Scholar 

  25. Caldas, L., Norford, L.K., Rocha, J.M.: An evolutionary model for sustainable design. In: AAAI 2011 Spring Symposium on Artificial Intelligence and Sustainable Design (SS-11-02) 2003). https://doi.org/10.1108/14777830310479450

    Article  Google Scholar 

  26. Østergård, T.: Proactive building simulations for early design support: multi-actor decision-making basedon Monte Carlo simulations and global sensitivity analysis. Aalborg Universitetsforlag. Ph.D.-serien for Det Ingeniør- og Naturvidenskabelige Fakultet, Aalborg Universitet (2017). https://doi.org/10.5278/vbn.phd.eng.00017

  27. Gałuszka, A., Krystek, J., Swierniak, A., Lungoci, C., Grzejszczak, T.: Information management in passenger traffic supporting system design as a multi-criteria discrete optimization task. Arch. Control Sci. 2017(2), 229–238 (2017)

    Article  Google Scholar 

  28. Rolfe Judd Architecture, CBRE: Modern Office Standard Polska (2016). www.mosp.pl

Download references

Acknowledgment

This work was supported by the following Projects: Ministry of Science and Higher Education funds 10/DW/2017/01/1 for the first (Ewa Gilner) author. Institute of Automatic Control BK Grant 02/010/BK18/0102 (BK/200/Rau1/2018) in the year 2019 for the second (Adam Galuszka) and third (Tomasz Grychowski) author. The analysis has been performed with the use of IT infrastructure of GeCONiI Upper Silesian Centre for Computational Science and Engineering (NCBiR grant no POIG.02.03.01-24-099/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Gilner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gilner, E., Galuszka, A., Grychowski, T. (2019). Application of Artificial Intelligence Methods in Sustainable Building Design. In: Misra, S., et al. Computational Science and Its Applications – ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science(), vol 11619. Springer, Cham. https://doi.org/10.1007/978-3-030-24289-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24289-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24288-6

  • Online ISBN: 978-3-030-24289-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics