Skip to main content

Ecophysiology of Plants in Dry Environments

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

Drought is a meteorological term which indicates a long period when there is not enough rain for the successful growth of crops or replenishment of water supplies (see also Chap. 1). The expression water stress is frequently used to indicate the complex series of effects that are triggered in plants by drought. The term drought stress is more appropriate to specify when the stress status occurs only over a long period of time. However, because it is often difficult to separate the two phenomena, the definitions of water stress, drought stress, and water deficit are often used interchangeably. Drought leads to water deficit in the soil and plant tissues, which in turn alters physiological processes and can have ultimate consequences for growth, development, and survival of plants. Among the many biochemical and developmental processes that are affected by water stress, decrease of photosynthesis (Cornic and Massacci 1996; Flexas et al. 2002; Sperlich et al. 2016), changes in water relations (Gorai et al. 2015; Reinhardt et al. 2015; Yousfi et al. 2016), reduction of both cell division and expansion (Avramova et al. 2016; Clauw et al. 2015, 2016), abscisic acid (ABA) synthesis (Du et al. 2018; Linster et al. 2015; Teng et al. 2014), and accumulation of sugars (Srivastava et al. 2018; Zandalinas et al. 2018) play a fundamental role in reducing productivity. The concept of stress cannot be separated from that of stress tolerance (sometimes indicated with the less appropriate term of stress resistance), which is the plant’s ability to survive in an unfavorable environment. Such an ability can derive either from adaptation or acclimation to the stress condition. Both terms indicate an increase in tolerance and are sometimes erroneously used interchangeably. The difference is in the cause of the increased tolerance: in acclimated plants, it is the result of a previous stress condition, while in adapted plants, the tolerance is fixed in the genome and derives from selection processes that have occurred over many generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad I, Larher F, Stewart GR (1979) Sorbitol, a compatible osmotic solute in Plantago maritima. New Phytol 82:671–678

    Article  CAS  Google Scholar 

  • Almeida-Rodriguez AM, Hacke UG, Laur J (2011) Influence of evaporative demand on aquaporin expression and root hydraulics of hybrid poplar. Plant Cell Environ 34:1318–1331. https://doi.org/10.1111/j.1365-3040.2011.02331.x

    Article  CAS  PubMed  Google Scholar 

  • Andrews PK, Chalmers DJ, Moremong M (1992) Canopy-air temperature differences and soil water as predictors of water stress of apple trees grown in a humid, temperate climate. J Am Soc Horticult Sci 117:453–458

    Article  Google Scholar 

  • Ariani A, Francini A, Andreucci A, Sebastiani L (2016) Over-expression of AQUA1 in Populus alba Villafranca clone increases relative growth rate and water use efficiency, under Zn excess condition. Plant Cell Rep 35:289–301. https://doi.org/10.1007/s00299-015-1883-9

    Article  CAS  PubMed  Google Scholar 

  • Attia Z, Domec J-C, Oren R, Way DA, Moshelion M (2015) Growth and physiological responses of isohydric and anisohydric poplars to drought. J Exp Bot 66:4373–4381. https://doi.org/10.1093/jxb/erv195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avramova V, Nagel KA, AbdElgawad H, Bustos D, DuPlessis M, Fiorani F, Beemster GTS (2016) Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J Exp Bot 67:2453–2466. https://doi.org/10.1093/jxb/erw055

    Article  CAS  PubMed  Google Scholar 

  • Baltzer JL, Davies SJ, Bunyavejchewin S, Noor NSM (2008) The role of desiccation tolerance in determining tree species distributions along the Malay–Thai Peninsula. Funct Ecol 22:221–231. https://doi.org/10.1111/j.1365-2435.2007.01374.x

    Article  Google Scholar 

  • Bieleski RL (1982) Sugar alcohols in plants. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology, vol 13A. Springer, New York, pp 158–192

    Google Scholar 

  • Bolhar-Nordenkampf HR, Oquist G (1993) Chlorophyll fluorescence as a tool in photosynthesis research. In: Hall DO, Scurlock JMO, Bohlar-Nordenkampf HR, Leegood RC, Long SP (eds) Photosynthesis and production in a changing environment: a field and laboratory manual. Chapman & Hall, London, pp 193–206

    Google Scholar 

  • Bosabalidis AM, Kofidis G (2002) Comparative effects of drought stress on leaf anatomy of two olive cultivars. Plant Sci 163:375–379

    Article  CAS  Google Scholar 

  • Brouwer R (1983) Functional equilibrium - Sense or nonsense. Neth J Agric Sci 31:335–348

    Google Scholar 

  • Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547. https://doi.org/10.3389/fpls.2015.00547

    Article  PubMed  PubMed Central  Google Scholar 

  • Buwalda JG, Lenz F (1992) Effects of cropping, nutrition and water supply on accumulation and distribution of biomass and nutrients for apple trees on ‘M9’ root systems. Physiologia Plantarum 84:21–28

    Article  CAS  Google Scholar 

  • Carlquist S (2012) How wood evolves: a new synthesis. Botany 90:901–940. https://doi.org/10.1139/b2012-048

    Article  Google Scholar 

  • Carnicer J, Barbeta A, Sperlich D, Coll M, Peñuelas J (2013) Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front Plant Sci 4:409. https://doi.org/10.3389/fpls.2013.00409

    Article  PubMed  PubMed Central  Google Scholar 

  • Caruso A, Morabito D, Delmotte F, Kahlem G, Carpin S (2002) Dehydrin induction during drought and osmotic stress in Populus. Plant Physiol Biochem 40:1033–1042. https://doi.org/10.1016/S0981-9428(02)01468-7

    Article  CAS  Google Scholar 

  • Claeys H, Inze D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779. https://doi.org/10.1104/pp.113.220921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clauw P et al (2015) Leaf responses to mild drought stress in natural variants of Arabidopsis. Plant Physiol 167:800–816. https://doi.org/10.1104/pp.114.254284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clauw P et al (2016) Leaf growth response to mild drought: natural variation in Arabidopsis sheds light on trait architecture. Plant Cell 28:2417–2434. https://doi.org/10.1105/tpc.16.00483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cochard H, Coll L, Le Roux X, Ameglio T (2002) Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut. Plant Physiol 128:282–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cocozza C, Cherubini P, Regier N, Saurer M, Frey B, Tognetti R (2010) Early effects of water deficit on two parental clones of Populus nigra grown under different environmental conditions. Funct Plant Biol 37:244–254. https://doi.org/10.1071/FP09156

    Article  Google Scholar 

  • Cornic G, Massacci A (1996) Leaf photosynthesis under drought stress. Photosynth Environ 5:347–366

    Article  CAS  Google Scholar 

  • Cornish K, Zeevaart JAD (1985) Abscisic acid accumulation by roots of Xanthium strumarium L. and Lycopersicon esculentum Mill. in relation to water stress. Plant Physiol 79:653–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cushman JC, Borland AM (2002) Induction of Crassulacean acid metabolism by water limitation. Plant Cell Environ 25:295–310

    Article  CAS  PubMed  Google Scholar 

  • Davies WJ, Zhang J (1991) Root signals and the regulation of growth and development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    Article  CAS  Google Scholar 

  • Dewar R, Mauranen A, Mäkelä A, Hölttä T, Medlyn B, Vesala T (2018) New insights into the covariation of stomatal, mesophyll and hydraulic conductances from optimization models incorporating nonstomatal limitations to photosynthesis. New Phytol 217:571–585. https://doi.org/10.1111/nph.14848

    Article  CAS  PubMed  Google Scholar 

  • Dorffling K (1972) Recent advances in abscisic acid research. In: Kaldeway H, Vardar G (eds) Hormonal regulation in plant growth and development. Verlag Chemie, Weinheim, pp 281–295

    Google Scholar 

  • Du H, Huang F, Wu N, Li X, Hu H, Xiong L (2018) Integrative regulation of drought escape through ABA dependent and independent pathways in rice molecular plant. https://doi.org/10.1016/j.molp.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  • Edwards GE, Franceschi VR, Voznesenskaya EV (2004) Single-cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Biol 55:173–196. https://doi.org/10.1146/annurev.arplant.55.031903.141725

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Bjorkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub. Encelia farinosa Oecologia 36:151–162

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 40:503–537

    Article  CAS  Google Scholar 

  • Farrar JF, Minchin PEH (1991) Carbon partitioning in split root systems of barley: relation to metabolism. J Exp Bot 42:1261–1269

    Article  CAS  Google Scholar 

  • Flexas J et al (2002) Effects of drought on photosynthesis in grapevines under field conditions: an evaluation of stomatal and mesophyll limitations. Funct Plant Biol 29:461–471. https://doi.org/10.1071/PP01119

    Article  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci USA 99:15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goddijn OJM, van Dun K (1999) Trehalose metabolism in plants. Trends Plant Sci 4:315–319

    Article  CAS  PubMed  Google Scholar 

  • Gollan T, Passioura JB, Munns R (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 13:459–464

    Google Scholar 

  • Gorai M, Laajili W, Santiago LS, Neffati M (2015) Rapid recovery of photosynthesis and water relations following soil drying and re-watering is related to the adaptation of desert shrub Ephedra alata subsp. alenda (Ephedraceae) to arid environments. Environ Exp Bot 109:113–121. https://doi.org/10.1016/j.envexpbot.2014.08.011

    Article  CAS  Google Scholar 

  • Gowing DJG, Davies WJ, Jones HG (1990) A positive root-sourced signal as an indicator of soil drying in apple, Malus x domestica Borkh. J Exp Bot 41:1535–1540

    Article  Google Scholar 

  • Gratani L, Bombelli A (2000) Correlation between leaf age and other leaf traits in three Mediterranean maquis shrub species: Quercus ilex, Phillyrea latifolia and Cistus incanus. Environ Exp Bot 43:141–153. https://doi.org/10.1016/S0098-8472(99)00052-0

    Article  Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1456–1466. https://doi.org/10.4161/psb.21949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera A (2009) Crassulacean acid metabolism and fitness under water deficit stress: if not for carbon gain, what is facultative CAM good for? Ann Bot 103:645–653. https://doi.org/10.1093/aob/mcn145

    Article  CAS  PubMed  Google Scholar 

  • Hsiao TC (1973) Plant responses to water stress. Annu Rev Plant Physiol 24:519–570

    Article  CAS  Google Scholar 

  • Hsiao TC, Jing JH (1987) Leaf and root expansive growth in response to water deficits. In: Cosgrove DJ, Knievel DP (eds) Physiology of cell expansion during plant growth. The Pennsylvania State University, State College, PA, pp 180–192

    Google Scholar 

  • Hubick KT, Farquhar GD (1987) Carbon isotope discrimination—selecting for water-use efficiency. Aust Cotton Grower 8:66–68

    Google Scholar 

  • Jackson RD (1982) Canopy temperature and crop water stress. In: Hillel D (ed) Advances in irrigation, vol 1. Academic, New York, pp 43–85

    Google Scholar 

  • Jones HG, Sutherland RA (1991) Stomatal control of xylem embolism. Plant Cell Environ 14:607–612

    Article  Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, Cambridge

    Google Scholar 

  • Jones HG, Lakso AN, Syvertsen JP (1985) Physiological control of water status in temperate and subtropical fruit trees. Hortic Rev 7:301–344

    Google Scholar 

  • Kellogg EA (2013) C4 photosynthesis. Curr Biol 23:R594–R599. https://doi.org/10.1016/j.cub.2013.04.066

    Article  CAS  PubMed  Google Scholar 

  • Knipfer T, Cuneo IF, Brodersen CR, McElrone AJ (2016) In situ visualization of the dynamics in xylem embolism formation and removal in the absence of root pressure: a study on excised grapevine stems. Plant Physiol 171:1024–1036. https://doi.org/10.1104/pp.16.00136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kolb KJ, Sperry JS (1999) Transport constraints on water use by the Great Basin shrub, Artemisia tridentata. Plant Cell Environ 22:925–935

    Article  Google Scholar 

  • Ku SB, Edwards GE (1978) Oxygen inhibition of photosynthesis. III. Temperature-dependence of quantum yield and its relation to O2/CO2 solubility ratio. Planta 140:1–6

    Article  CAS  PubMed  Google Scholar 

  • Kursar TA, Engelbrecht BMJ, Burke A, Tyree MT, Omari BE, Giraldo JP (2009) Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct Ecol 23:93–102. https://doi.org/10.1111/j.1365-2435.2008.01483.x

    Article  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology. Springer, New York

    Book  Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer, Berlin

    Book  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses, vol 1, 2nd edn. Academic, New York

    Google Scholar 

  • Linster E et al (2015) Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nat Commun 6:7640. https://doi.org/10.1038/ncomms8640. https://www.nature.com/articles/ncomms8640#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  • Liu M, Yu H, Zhao G, Huang Q, Lu Y, Ouyang B (2018) Identification of drought-responsive microRNAs in tomato using high-throughput sequencing. Funct Integr Genomics 18:67–78. https://doi.org/10.1007/s10142-017-0575-7

    Article  CAS  PubMed  Google Scholar 

  • Lo Gullo MA, Salleo S (1988) Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol 108:267–276. https://doi.org/10.1111/j.1469-8137.1988.tb04162.x

    Article  PubMed  Google Scholar 

  • Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45:633–662

    Article  CAS  Google Scholar 

  • Lüttge U (2004) Ecophysiology of crassulacean acid metabolism (CAM). Ann Bot 93:629–652

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma X, Zhang B, Liu C, Tong B, Guan T, Xia D (2017) Expression of a populus histone deacetylase gene 84KHDA903 in tobacco enhances drought tolerance. Plant Sci 265:1–11. https://doi.org/10.1016/j.plantsci.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  • Magwanga RO et al (2018) Characterization of the late embryogenesis abundant (LEA) proteins family and their role in drought stress tolerance in upland cotton. BMC Genet 19:6. https://doi.org/10.1186/s12863-017-0596-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchin RM, Broadhead AA, Bostic LE, Dunn RR, Hoffmann WA (2016) Stomatal acclimation to vapour pressure deficit doubles transpiration of small tree seedlings with warming. Plant Cell Environ 39:2221–2234

    Article  CAS  PubMed  Google Scholar 

  • Martínez-Vilalta J, Garcia-Forner N (2017) Water potential regulation, stomatal behaviour and hydraulic transport under drought: deconstructing the iso/anisohydric concept. Plant Cell Environ 40:962–976. https://doi.org/10.1111/pce.12846

    Article  CAS  PubMed  Google Scholar 

  • Masia A, Pitacco A, Braggio L, Giulivo C (1994) Hormonal responses to partial drying of the root system of Helianthus annuus. J Exp Bot 270:69–76

    Article  Google Scholar 

  • McDowell N et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x

    Article  PubMed  Google Scholar 

  • Meinzer FC, Goldstein G, Grantz DA (1990) Carbon isotope discrimination in coffee genotypes grown under limited water-supply. Plant Physiol 92:130–135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnocci A, Panicucci A, Sebastiani L, Lorenzini G, Vitagliano C (1999) Physiological and morphological responses of olive plants to ozone exposure during a growing season. Tree Physiol 19:391–397

    Article  CAS  PubMed  Google Scholar 

  • Moshelion M, Halperin O, Wallach R, Oren R, Way DA (2015) Role of aquaporins in determining transpiration and photosynthesis in water-stressed plants: crop water-use efficiency, growth and yield. Plant Cell Environ 38:1785–1793. https://doi.org/10.1111/pce.12410

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, King RW (1988) Abscisic acid is not the only stomatal inhibitor in the transpiration stream of wheat plants. Plant Physiol 88:703–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nobel PS (1999) Physicochemical and environmental plant physiology, 2nd edn. Academic, San Diego, CA

    Google Scholar 

  • Ort DR (2001) When there is too much light. Plant Physiol 125:29–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F (2009) Drought and abscisic acid effects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: a trans-scale approach. Plant Physiol 149:2000–2012. https://doi.org/10.1104/pp.108.130682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkhurst DF (1994) Diffusion of CO2 and other gases inside leaves. New Phytol 126:449–479

    Article  CAS  PubMed  Google Scholar 

  • Pfautsch S (2016) Hydraulic anatomy and function of trees—basics and critical developments. Curr Forest Rep 2:236–248. https://doi.org/10.1007/s40725-016-0046-8

    Article  Google Scholar 

  • Pilon-Smits EAH et al (1998) Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol 152:525–532

    Article  CAS  Google Scholar 

  • Pockman WT, Sperry JS (2000) Vulnerability to xylem cavitation and the distribution of Sonoran desert vegetation. Am J Bot 87:1287–1299

    Article  CAS  PubMed  Google Scholar 

  • Raison JK, Pike CS, Berry JA (1982) Growth temperature-induced alterations in the thermotropic properties of Nerium oleander membrane lipids. Plant Physiol 70:215–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinhardt K, Germino MJ, Kueppers LM, Domec J-C, Mitton J (2015) Linking carbon and water relations to drought-induced mortality in Pinus flexilis seedlings. Tree Physiol 35:771–782. https://doi.org/10.1093/treephys/tpv045

    Article  CAS  PubMed  Google Scholar 

  • Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015) The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179:641–654. https://doi.org/10.1007/s00442-015-3380-9

    Article  CAS  PubMed  Google Scholar 

  • Rossi L, Sebastiani L, Tognetti R, d’Andria R, Morelli G, Cherubini P (2013) Tree-ring wood anatomy and stable isotopes show structural and functional adjustments in olive trees under different water availability. Plant Soil 372:567–579. https://doi.org/10.1007/s11104-013-1759-0

    Article  CAS  Google Scholar 

  • Sade N, Moshelion M (2014) The dynamic isohydric–anisohydric behavior of plants upon fruit development: taking a risk for the next generation. Tree Physiol 34:1199–1202. https://doi.org/10.1093/treephys/tpu070

    Article  PubMed  Google Scholar 

  • Sade N, Gebremedhin A, Moshelion M (2012) Risk-taking plants: anisohydric behavior as a stress-resistance trait. Plant Signal Behav 7:767–770. https://doi.org/10.4161/psb.20505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF (2016) A portrait of the C4 photosynthetic family on the 50th anniversary of its discovery: species number, evolutionary lineages, and Hall of Fame. J Exp Bot 67:4039–4056. https://doi.org/10.1093/jxb/erw156

    Article  CAS  PubMed  Google Scholar 

  • Schulte PJ, Henry LT (1992) Pressure-volume analysis of tissue water relations parameters for individual fascicles of loblolly pine (Pinus taeda L.). Tree Physiol 10:381–389

    Article  CAS  PubMed  Google Scholar 

  • Schurr U, Gollan T, Schulze E-D (1992) Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ 15:561–567

    Article  CAS  Google Scholar 

  • Schymanski SJ, Or D (2016) Wind increases leaf water use efficiency. Plant Cell Environ 39:1448–1459

    Article  CAS  PubMed  Google Scholar 

  • Shackel KA, Lampinen B, Southwick S, Olson W, Sibbett S, Krueger W, Yeager J (2000) Deficit irrigation in prunes: maintaining productivity with less water. HortScience 35:1063–1066

    Article  Google Scholar 

  • Simonneau T, Habib R (1994) Water uptake regulation in peach trees with split-root systems. Plant Cell Environ 17:379–388

    Article  Google Scholar 

  • Smedley MP, Dawson TE, Comstock JP, Donovan LA, Sherrill DE, Cook CS, Ehleringer JR (1991) Seasonal carbon isotope discrimination in a grassland community. Oecologia 85:314–320

    Article  PubMed  Google Scholar 

  • Sofo A, Dichio B, Xiloyannis C, Masia A (2004) Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiol Plant 121:58–65. https://doi.org/10.1111/j.0031-9317.2004.00294.x

    Article  CAS  PubMed  Google Scholar 

  • Sperlich D, Barbeta A, Ogaya R, Sabaté S, Peñuelas J (2016) Balance between carbon gain and loss under long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L. J Exp Bot 67:821–833. https://doi.org/10.1093/jxb/erv492

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Hacke UG (2002) Desert shrub water relations with respect to soil characteristics and plant functional type. Funct Ecol 16:367–378

    Article  Google Scholar 

  • Sperry JS, Ikeda T (1997) Xylem cavitation in roots and stems of Douglas fir and white fir. Tree Physiol 17:275–280

    Article  CAS  PubMed  Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water stress-induced xylem embolism. Plant Physiol 88:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava K, Jentsch A, Kreyling J, Glaser B, Wiesenberg GLB (2018) Short-term carbon dynamics in a temperate grassland and heathland ecosystem exposed to 104 days of drought followed by irrigation. Isotopes Environ Health Stud 54:41–62. https://doi.org/10.1080/10256016.2017.1371714

    Article  CAS  PubMed  Google Scholar 

  • Stoll M, Loveys B, Dry P (2000) Hormonal changes induced by partial rootzone drying of irrigated grapevine. J Exp Bot 51:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Tan CS, Cornelisse A, Buttery BR (1981) Transpiration, stomatal conductance, and photosynthesis of tomato plants with various proportions of root system supplied with water [Varieties]. J Am Soc Horticult Sci 106:147–151

    Google Scholar 

  • Tanner CB (1963) Plant temperature. Agron J 55:210–211

    Article  Google Scholar 

  • Tarczynski MC, Jensen RG, Bohnert HJ (1993) Stress protection of transgenic plants tobacco by production of the osmolyte mannitol. Science 259:508–510

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Davies WJ (1993) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 16:341–349

    Article  CAS  Google Scholar 

  • Tardieu F, Zhang J, Davies WJ (1992) What information is conveyed by an ABA signal from maize roots in drying field soil? Plant Cell Environ 15:185–191

    Article  CAS  Google Scholar 

  • Teng K et al (2014) Exogenous ABA induces drought tolerance in upland rice: the role of chloroplast and ABA biosynthesis-related gene expression on photosystem II during PEG stress. Acta Physiologiae Plantarum 36:2219–2227. https://doi.org/10.1007/s11738-014-1599-4

    Article  CAS  Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosystem II. Planta 193:300–306

    Article  CAS  Google Scholar 

  • Torres-Ruiz JM et al (2017) Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact. New Phytol 215:489–499. https://doi.org/10.1111/nph.14589

    Article  PubMed  Google Scholar 

  • Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu Rev Plant Physiol Plant Mol Biol 40:19–36

    Article  Google Scholar 

  • Tyree MY, Zimmerman MH (2002) Xylem structure and the ascent of sap. Springer, Berlin

    Book  Google Scholar 

  • Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrin E (2003) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Viljanen K, Sundberg S, Ohshima T, Heinonen M (2002) Carotenoids as antioxidants to prevent photooxidation. Eur J Lipid Sci Technol 104:353–359

    Article  CAS  Google Scholar 

  • Williams JHH, Minchin PEH, Farrar JF (1991) Carbon partitioning in split root systems of barley: the effect of osmotica. J Exp Bot 42:453–460

    Article  CAS  Google Scholar 

  • Wu T et al (2015) Suppressing sorbitol synthesis substantially alters the global expression profile of stress response genes in apple (Malus domestica) leaves. Plant Cell Physiol 56:1748–1761

    Article  CAS  PubMed  Google Scholar 

  • Yousfi N, Sihem N, Ramzi A, Abdelly C (2016) Growth, photosynthesis and water relations as affected by different drought regimes and subsequent recovery in Medicago laciniata (L.) populations. J Plant Biol 59:33–43. https://doi.org/10.1007/s12374-016-0422-8

    Article  CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagon D, Arbona V, Gomez-Cadenas A (2018) Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum 162:2–12. https://doi.org/10.1111/ppl.12540

    Article  CAS  PubMed  Google Scholar 

  • Zeiger E, Farquhar GD, Cowan IR (1987) Stomatal function. Stanford University Press, Stanford, CA

    Google Scholar 

  • Zhang J, Kirkham MB (1995) Water relations of water-stressed, split-root C4 (Sorghum bicolor; Poaceae) and C3 (Helianthus annuus; Asteraceae) plants. Am J Bot 82:1220–1229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Lombardini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lombardini, L., Rossi, L. (2019). Ecophysiology of Plants in Dry Environments. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_4

Download citation

Publish with us

Policies and ethics