Skip to main content

Ecohydrology of Urban Ecosystems

  • Chapter
  • First Online:
Dryland Ecohydrology

Abstract

More than half of the world population lives in urban areas with projections showing a population increase up to 66% by 2050 (UN 2015). To accommodate the growing number of city dwellers, urban areas are expanding twice as fast as their population (e.g., Seto et al. 2012), raising concerns about sustainability and livability of cities. Given the increasing importance of urban areas in both driving and being impacted by global environmental changes, there is a rapidly growing interest in understanding their dynamics (Seto and Shepherd 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari H (2002) Shade trees reduce building energy use and CO2 emissions from power plants. Environ Pollut 116:S119–S126

    Article  CAS  PubMed  Google Scholar 

  • Armson D, Stringer P, Ennos A (2012) The effect of tree shade and grass on surface and globe temperatures in an urban area. Urban For Urban Green 11:245–255

    Article  Google Scholar 

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  • Asawa T, Kiyono T, Hoyano A (2017) Continuous measurement of whole-tree water balance for studying urban tree transpiration. Hydrol Process 31(17):3056–3068

    Article  Google Scholar 

  • Balling R, Brazel S (1987) Recent changes in Phoenix, Arizona summertime diurnal precipitation patterns. Theor Appl Climatol 38:50–54

    Article  Google Scholar 

  • Balling RC, Gober P, Jones N (2008) Sensitivity of residential water consumption to variations in climate: an intraurban analysis of Phoenix, Arizona. Water Resour Res 44:W10401

    Article  Google Scholar 

  • Barron O, Barr A, Donn M (2013) Effect of urbanisation on the water balance of a catchment with shallow groundwater. J Hydrol 485:162–176

    Article  Google Scholar 

  • Bartens J, Day SD, Harris JR, Dove JE, Wynn TM (2008) Can urban tree roots improve infiltration through compacted subsoils for stormwater management? J Environ Qual 37:2048–2057

    Article  CAS  PubMed  Google Scholar 

  • Berland A, Shiflett SA, Shuster WD, Garmestani AS, Goddard HC, Herrmann DL, Hopton ME (2017) The role of trees in urban stormwater management. Landsc Urban Plan 162:167–177

    Article  PubMed  PubMed Central  Google Scholar 

  • Bijoor NS, Mccarthy HR, Zhang D, Pataki DE (2012) Water sources of urban trees in the Los Angeles metropolitan area. Urban Ecosyst 15:195–214

    Article  Google Scholar 

  • Boggs J, Sun G (2011) Urbanization alters watershed hydrology in the Piedmont of North Carolina. Ecohydrology 4:256–264

    Article  Google Scholar 

  • Bolund P, Hunhammar S (1999) Ecosystem services in urban areas. Ecol Econ 29:293–301

    Article  Google Scholar 

  • Bonan GB (1997) Effects of land use on the climate of the United States. Clim Chang 37:449–486

    Article  Google Scholar 

  • Bonneau J, Fletcher TD, Costelloe JF, Burns MJ (2017) Stormwater infiltration and the ‘urban karst’–a review. J Hydrol 552:141–150

    Article  Google Scholar 

  • Bou-Zeid E, Overney J, Rogers BD, Parlange MB (2009) The effects of building representation and clustering in large-eddy simulations of flows in urban canopies. Bound-Layer Meteorol 132:415–436

    Article  Google Scholar 

  • Bowler DE, Buyung-Ali L, Knight TM, Pullin AS (2010) Urban greening to cool towns and cities: a systematic review of the empirical evidence. Landsc Urban Plan 97:147–155

    Article  Google Scholar 

  • Boyd M, Bufill M, Knee R (1993) Pervious and impervious runoff in urban catchments. Hydrol Sci J 38:463–478

    Article  Google Scholar 

  • Brazel A, Selover N, Vose R, Heisler G (2000) The tale of two climates—Baltimore and Phoenix urban LTER sites. Clim Res 15:123–135

    Article  Google Scholar 

  • Breyer B, Zipper SC, Qiu J (2018) Sociohydrological impacts of water conservation under anthropogenic drought in Austin. Water Resources Research, Texas

    Google Scholar 

  • Broadbent AM, Coutts AM, Tapper NJ, Demuzere M (2017a) The cooling effect of irrigation on urban microclimate during heatwave conditions. Urban Clim 23:309–329

    Article  Google Scholar 

  • Broadbent AM, Coutts AM, Tapper NJ, Demuzere M, Beringer J (2017b) The microscale cooling effects of water sensitive urban design and irrigation in a suburban environment. Theor Appl Climatol 134:1–23

    Article  Google Scholar 

  • Bruse M, Fleer H (1998) Simulating surface–plant–air interactions inside urban environments with a three dimensional numerical model. Environ Model Softw 13:373–384

    Article  Google Scholar 

  • Burian SJ, Shepherd JM (2005) Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol Process 19:1089–1103

    Article  Google Scholar 

  • Caird MA, Richards JH, Donovan LA (2007) Nighttime stomatal conductance and transpiration in C3 and C4 plants. Plant Physiol 143:4–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang C-R, Li M-H, Chang S-D (2007) A preliminary study on the local cool-island intensity of Taipei city parks. Landsc Urban Plan 80:386–395

    Article  Google Scholar 

  • Changnon S (1981) METROMEX: a review and summary. Springer, Boston, MA

    Book  Google Scholar 

  • Chapman S, Watson JEM, Salazar A, Thatcher M, Mcalpine CA (2017) The impact of urbanization and climate change on urban temperatures: a systematic review. Landsc Ecol 32:1921–1935

    Article  Google Scholar 

  • Chen L, Zhang Z, Li Z, Tang J, Caldwell P, Zhang W (2011) Biophysical control of whole tree transpiration under an urban environment in Northern China. J Hydrol 402:388–400

    Article  Google Scholar 

  • Cheng X, Wei B, Chen G, Li J, Song C (2014) Influence of park size and its surrounding urban landscape patterns on the park cooling effect. J Urban Plann Dev 141:A4014002

    Article  Google Scholar 

  • Chiesura A (2004) The role of urban parks for the sustainable city. Landsc Urban Plan 68:129–138

    Article  Google Scholar 

  • Chow WT, Pope RL, Martin CA, Brazel AJ (2011) Observing and modeling the nocturnal park cool island of an arid city: horizontal and vertical impacts. Theor Appl Climatol 103:197–211

    Article  Google Scholar 

  • Cohen P, Potchter O, Matzarakis A (2012) Daily and seasonal climatic conditions of green urban open spaces in the Mediterranean climate and their impact on human comfort. Build Environ 51:285–295

    Article  Google Scholar 

  • Collier CG (2006) The impact of urban areas on weather. Q J R Meteorol Soc 132:1–25

    Article  Google Scholar 

  • Costa KH, Groffman PM (2013) Factors regulating net methane flux by soils in urban forests and grasslands. Soil Sci Soc Am J 77:850–855

    Article  CAS  Google Scholar 

  • Costanza R, D’arge R, De Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’neill RV, Paruelo J (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Costanza R, De Groot R, Sutton P, Van Der Ploeg S, Anderson SJ, Kubiszewski I, Farber S, Turner RK (2014) Changes in the global value of ecosystem services. Glob Environ Chang 26:152–158

    Article  Google Scholar 

  • Coutts AM, Daly E, Beringer J, Tapper NJ (2013a) Assessing practical measures to reduce urban heat: green and cool roofs. Build Environ 70:266–276

    Article  Google Scholar 

  • Coutts AM, Tapper NJ, Beringer J, Loughnan M, Demuzere M (2013b) Watering our cities: the capacity for water sensitive urban design to support urban cooling and improve human thermal comfort in the Australian context. Prog Phys Geogr 37:2–28

    Article  Google Scholar 

  • Coutts AM, White EC, Tapper NJ, Beringer J, Livesley SJ (2016) Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor Appl Climatol 124:55–68

    Article  Google Scholar 

  • Crawford B, Grimmond C, Christen A (2011) Five years of carbon dioxide fluxes measurements in a highly vegetated suburban area. Atmos Environ 45:896–905

    Article  CAS  Google Scholar 

  • Cregg BM (1995) Plant moisture stress of green ash trees in contrasting urban sites. J Arboric 21:271–276

    Google Scholar 

  • Cregg BM, Dix ME (2001) Tree moisture stress and insect damage in urban areas in relation to heat island effects. J Arboric 27:8–17

    Google Scholar 

  • Daly E, Porporato A, Rodriguez-Iturbe I (2004) Coupled dynamics of photosynthesis, transpiration, and soil water balance. Part I: upscaling from hourly to daily level. J Hydrometeorol 5:546–558

    Article  Google Scholar 

  • Daly E, Deletic A, Hatt B, Fletcher T (2012) Modelling of stormwater biofilters under random hydrologic variability: a case study of a car park at Monash University, Victoria (Australia). Hydrol Process 26:3416–3424

    Article  CAS  Google Scholar 

  • Day SD, Eric Wiseman P, Dickinson SB, Roger Harris J (2010a) Tree root ecology in the urban environment and implications for a sustainable rhizosphere. J Arboric 36:193

    Google Scholar 

  • Day SD, Wiseman PE, Dickinson SB, Harris JR (2010b) Contemporary concepts of root system architecture of urban trees. Arboricult Urban For 36:149–159

    Google Scholar 

  • Decina SM, Hutyra LR, Gately CK, Getson JM, Reinmann AB, Gianotti AGS, Templer PH (2016) Soil respiration contributes substantially to urban carbon fluxes in the greater Boston area. Environ Pollut 212:433–439

    Article  CAS  PubMed  Google Scholar 

  • Decina SM, Templer PH, Hutyra LR, Gately CK, Rao P (2017) Variability, drivers, and effects of atmospheric nitrogen inputs across an urban area: emerging patterns among human activities, the atmosphere, and soils. Sci Total Environ 609:1524–1534

    Article  CAS  PubMed  Google Scholar 

  • Defries R, Eshleman KN (2004) Land-use change and hydrologic processes: a major focus for the future. Hydrol Process 18:2183–2186

    Article  Google Scholar 

  • Dimoudi A, Nikolopoulou M (2003) Vegetation in the urban environment: microclimatic analysis and benefits. Energ Buildings 35:69–76

    Article  Google Scholar 

  • Dobbs C, Nitschke CR, Kendal D (2014) Global drivers and tradeoffs of three urban vegetation ecosystem services. PLoS One 9:e113000

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doick KJ, Peace A, Hutchings TR (2014) The role of one large greenspace in mitigating London’s nocturnal urban heat island. Sci Total Environ 493:662–671

    Article  CAS  PubMed  Google Scholar 

  • Dover JW (2015) Green infrastructure: incorporating plants and enhancing biodiversity in buildings and urban environments. Routledge, London

    Book  Google Scholar 

  • Dow CL, Dewalle DR (2000) Trends in evaporation and Bowen ratio on urbanizing watersheds in eastern United States. Water Resour Res 36:1835–1843

    Article  Google Scholar 

  • Duursma RA, Medlyn BE (2012) MAESPA: a model to study interactions between water limitation, environmental drivers and vegetation function at tree and stand levels, with an example application to [CO2]× drought interactions. Geosci Model Dev Discuss 5(4):919–940

    Article  Google Scholar 

  • Elliott A, Trowsdale SA (2007) A review of models for low impact urban stormwater drainage. Environ Model Softw 22:394–405

    Article  Google Scholar 

  • Elmqvist T, Setälä H, Handel S, Van Der Ploeg S, Aronson J, Blignaut JN, Gomez-Baggethun E, Nowak D, Kronenberg J, De Groot R (2015) Benefits of restoring ecosystem services in urban areas. Curr Opin Environ Sustain 14:101–108

    Article  Google Scholar 

  • Endreny TA (2005) Land use and land cover effects on runoff processes: urban and suburban development. In: Encyclopedia of hydrological sciences. Wiley, Chichester

    Google Scholar 

  • Escobedo FJ, Kroeger T, Wagner JE (2011) Urban forests and pollution mitigation: analyzing ecosystem services and disservices. Environ Pollut 159:2078–2087

    Article  CAS  PubMed  Google Scholar 

  • Famulari D, Nemitz E, Di Marco C, Phillips GJ, Thomas R, House E, Fowler D (2010) Eddy-covariance measurements of nitrous oxide fluxes above a city. Agric For Meteorol 150:786–793

    Article  Google Scholar 

  • Fatichi S, Ivanov V, Caporali E (2012) A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments: 1. Theoretical framework and plot-scale analysis. J Adv Model Earth Syst 4(2):5003

    Google Scholar 

  • Fatichi S, Zeeman MJ, Fuhrer J, Burlando P (2014) Ecohydrological effects of management on subalpine grasslands: from local to catchment scale. Water Resour Res 50:148–164

    Article  Google Scholar 

  • Fatichi S, Pappas C, Ivanov VY (2016) Modeling plant–water interactions: an ecohydrological overview from the cell to the global scale. Wiley Interdiscip Rev Water 3:327–368

    Article  Google Scholar 

  • Fletcher T, Andrieu H, Hamel P (2013) Understanding, management and modelling of urban hydrology and its consequences for receiving waters: a state of the art. Adv Water Resour 51:261–279

    Article  Google Scholar 

  • Fletcher TD, Shuster W, Hunt WF, Ashley R, Butler D, Arthur S, Trowsdale S, Barraud S, Semadeni-Davies A, Bertrand-Krajewski J-L (2015) SUDS, LID, BMPs, WSUD and more–The evolution and application of terminology surrounding urban drainage. Urban Water J 12:525–542

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fresca B, Sharp JM Jr (2005) Hydrogeologic considerations of urban development: urban-induced recharge. Rev Eng Geol 16:123–136

    Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2011) An alternative explanation of the semiarid urban area “oasis effect”. J Geophys Res Atmos 116:D24113

    Article  Google Scholar 

  • Georgescu M, Moustaoui M, Mahalov A, Dudhia J (2013) Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat Clim Chang 3:37–41

    Article  Google Scholar 

  • Georgescu M, Morefield PE, Bierwagen BG, Weaver CP (2014) Urban adaptation can roll back warming of emerging megapolitan regions. Proc Natl Acad Sci 111:2909–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SE, Handley JF, Ennos AR, Pauleit S (2007) Adapting cities for climate change: the role of the green infrastructure. Built Environ 33:115–133

    Article  Google Scholar 

  • Giometto M, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange M (2016) Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Bound-Layer Meteorol 160:425–452

    Article  Google Scholar 

  • Giometto M, Christen A, Egli P, Schmid M, Tooke R, Coops N, Parlange M (2017) Effects of trees on mean wind, turbulence and momentum exchange within and above a real urban environment. Adv Water Resour 106:154–168

    Article  Google Scholar 

  • Girard P, Nadeau DF, Pardyjak ER, Overby M, Willemsen P, Stoll R, Bailey BN, Parlange MB (2017) Evaluation of the QUIC-URB wind solver and QESRadiant radiation-transfer model using a dense array of urban meteorological observations. Urban Clim 24:657–674

    Article  Google Scholar 

  • Golden HE, Hoghooghi N (2018) Green infrastructure and its catchment-scale effects: an emerging science. Wiley Interdiscip Rev Water 5:e1254

    Article  Google Scholar 

  • Golubiewski NE (2006) Urbanization increases grassland carbon pools: effects of landscaping in Colorado’s front range. Ecol Appl 16:555–571

    Article  PubMed  Google Scholar 

  • Gómez-Baggethun E, Barton DN (2013) Classifying and valuing ecosystem services for urban planning. Ecol Econ 86:235–245

    Article  Google Scholar 

  • Grawe D, Thompson HL, Salmond JA, Cai XM, Schlünzen KH (2013) Modelling the impact of urbanisation on regional climate in the greater London area. Int J Climatol 33:2388–2401

    Article  Google Scholar 

  • Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM (2008) Global change and the ecology of cities. Science 319:756–760

    Article  CAS  PubMed  Google Scholar 

  • Grimmond C, Oke T, Steyn D (1986) Urban water balance: 1. A model for daily totals. Water Resour Res 22:1397–1403

    Article  Google Scholar 

  • Grimmond C, Salmond J, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res Atmos 109:D24101

    Article  CAS  Google Scholar 

  • Grimmond C, Blackett M, Best M, Barlow J, Baik J, Belcher S, Bohnenstengel S, Calmet I, Chen F, Dandou A (2010) The international urban energy balance models comparison project: first results from phase 1. J Appl Meteorol Climatol 49:1268–1292

    Article  Google Scholar 

  • Groffman PM, Pouyat RV (2009) Methane uptake in urban forests and lawns. Environ Sci Technol 43:5229–5235

    Article  CAS  PubMed  Google Scholar 

  • Groffman PM, Pouyat RV, Cadenasso ML, Zipperer WC, Szlavecz K, Yesilonis ID, Band LE, Brush GS (2006) Land use context and natural soil controls on plant community composition and soil nitrogen and carbon dynamics in urban and rural forests. For Ecol Manag 236:177–192

    Article  Google Scholar 

  • Groffman PM, Williams CO, Pouyat RV, Band LE, Yesilonis ID (2009) Nitrate leaching and nitrous oxide flux in urban forests and grasslands. J Environ Qual 38:1848–1860

    Article  CAS  PubMed  Google Scholar 

  • Grover SP, Cohan A, Chan HS, Livesley SJ, Beringer J, Daly E (2013) Occasional large emissions of nitrous oxide and methane observed in stormwater biofiltration systems. Sci Total Environ 465:64–71

    Article  CAS  PubMed  Google Scholar 

  • Gunawardena K, Wells M, Kershaw T (2017) Utilising green and bluespace to mitigate urban heat island intensity. Sci Total Environ 584:1040–1055

    Article  PubMed  CAS  Google Scholar 

  • Hall SJ, Huber D, Grimm NB (2008) Soil N2O and NO emissions from an arid, urban ecosystem. J Geophys Res Biogeo 113:G01016

    Google Scholar 

  • Hamel P, Daly E, Fletcher TD (2013) Source-control stormwater management for mitigating the impacts of urbanisation on baseflow: a review. J Hydrol 485:201–211

    Article  Google Scholar 

  • Harman IN, Best MJ, Belcher SE (2004) Radiative exchange in an urban street canyon. Bound-Layer Meteorol 110:301–316

    Article  Google Scholar 

  • Hedquist BC, Brazel AJ (2006) Urban, residential, and rural climate comparisons from mobile transects and fixed stations: Phoenix, Arizona. J Ariz Nev Acad Sci 38:77–87

    Article  Google Scholar 

  • Hertwig D, Patnaik G, Leitl B (2017a) LES validation of urban flow, part I: flow statistics and frequency distributions. Environ Fluid Mech 17:521–550

    Article  CAS  Google Scholar 

  • Hertwig D, Patnaik G, Leitl B (2017b) LES validation of urban flow, part II: eddy statistics and flow structures. Environ Fluid Mech 17:551–578

    Article  CAS  Google Scholar 

  • Hibbs BJ (2016) Groundwater in urban areas. J Contemp Water Res Educ 159:1–4

    Article  Google Scholar 

  • Hilaire RS, Arnold MA, Wilkerson DC, Devitt DA, Hurd BH, Lesikar BJ, Lohr VI, Martin CA, Mcdonald GV, Morris RL (2008) Efficient water use in residential urban landscapes. HortScience 43:2081–2092

    Article  Google Scholar 

  • Holder CD, Gibbes C (2017) Influence of leaf and canopy characteristics on rainfall interception and urban hydrology. Hydrol Sci J 62:182–190

    Article  Google Scholar 

  • Holmer B, Thorsson S, Eliasson I (2007) Cooling rates, sky view factors and the development of intra-urban air temperature differences. Geogr Ann Ser B 89:237–248

    Article  Google Scholar 

  • Holmer B, Thorsson S, Lindén J (2013) Evening evapotranspirative cooling in relation to vegetation and urban geometry in the city of Ouagadougou, Burkina Faso. Int J Climatol 33:3089–3105

    Article  Google Scholar 

  • Huber WC, Dickinson RE, Barnwell TO Jr, Branch A (1988) Storm water management model version 4. Environmental Protection Agency, United States

    Google Scholar 

  • Hutyra LR, Duren R, Gurney KR, Grimm N, Kort EA, Larson E, Shrestha G (2014) Urbanization and the carbon cycle: current capabilities and research outlook from the natural sciences perspective. Earth’s Future 2:473–495

    Article  Google Scholar 

  • Idso CD, Idso SB, Balling RC Jr (2001) An intensive two-week study of an urban CO2 dome in Phoenix, Arizona, USA. Atmos Environ 35:995–1000

    Article  CAS  Google Scholar 

  • IPCC (2015) Climate change 2014: mitigation of climate change (intergovernmental panel on climate change). Cambridge University Press, Cambridge

    Google Scholar 

  • Ivanov VY, Bras RL, Vivoni ER (2008) Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks. Water Resour Res 44:W03429

    Google Scholar 

  • Jenerette GD, Alstad KP (2010) Water use in urban ecosystems: complexity, costs, and services of urban ecohydrology. Urban Ecosyst Ecol 55:353–371

    Google Scholar 

  • Kabir MI, Daly E, Maggi F (2017) Geochemical modelling of heavy metals in urban stormwater biofilters. Ecol Eng 102:565–576

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on climate. Nature 423:528–531

    Article  CAS  PubMed  Google Scholar 

  • Kanda M, Inagaki A, Miyamoto T, Gryschka M, Raasch S (2013) A new aerodynamic parametrization for real urban surfaces. Bound-Layer Meteorol 148:357–377

    Article  Google Scholar 

  • Kaye JP, Burke IC, Mosier AR, Pablo Guerschman J (2004) Methane and nitrous oxide fluxes from urban soils to the atmosphere. Ecol Appl 14:975–981

    Article  Google Scholar 

  • Kaye JP, Mcculley RL, Burke IC (2005) Carbon fluxes, nitrogen cycling, and soil microbial communities in adjacent urban, native and agricultural ecosystems. Glob Chang Biol 11:575–587

    Article  Google Scholar 

  • Kaye JP, Groffman PM, Grimm NB, Baker LA, Pouyat RV (2006) A distinct urban biogeochemistry? Trends Ecol Evol 21:192–199

    Article  PubMed  Google Scholar 

  • Kennedy C, Steinberger J, Gasson B, Hansen Y, Hillman T, Havranek M, Pataki D, Phdungsilp A, Ramaswami A, Mendez GV (2009) Greenhouse gas emissions from global cities. ACS Publications, Washington, DC

    Book  Google Scholar 

  • Kermavnar J, Vilhar U (2017) Canopy precipitation interception in urban forests in relation to stand structure. Urban Ecosyst 20:1373–1387

    Article  Google Scholar 

  • Koerner B, Klopatek J (2002) Anthropogenic and natural CO2 emission sources in an arid urban environment. Environ Pollut 116:S45–S51

    Article  CAS  PubMed  Google Scholar 

  • Koerner BA, Klopatek JM (2010) Carbon fluxes and nitrogen availability along an urban–rural gradient in a desert landscape. Urban Ecosyst 13:1–21

    Article  Google Scholar 

  • Konarska J, Uddling J, Holmer B, Lutz M, Lindberg F, Pleijel H, Thorsson S (2016) Transpiration of urban trees and its cooling effect in a high latitude city. Int J Biometeorol 60:159–172

    Article  PubMed  Google Scholar 

  • Kordowski K, Kuttler W (2010) Carbon dioxide fluxes over an urban park area. Atmos Environ 44:2722–2730

    Article  CAS  Google Scholar 

  • Krayenhoff ES, Voogt JA (2007) A microscale three-dimensional urban energy balance model for studying surface temperatures. Bound-Layer Meteorol 123:433–461

    Article  Google Scholar 

  • Krayenhoff E, Christen A, Martilli A, Oke T (2014) A multi-layer radiation model for urban neighbourhoods with trees. Bound-Layer Meteorol 151:139–178

    Article  Google Scholar 

  • Kusaka H, Kimura F (2004) Thermal effects of urban canyon structure on the nocturnal heat island: numerical experiment using a mesoscale model coupled with an urban canopy model. J Appl Meteorol 43:1899–1910

    Article  Google Scholar 

  • Laio F, Porporato A, Ridolfi L, Rodriguez-Iturbe I (2001) Plants in water-controlled ecosystems: active role in hydrologic processes and response to water stress: II. Probabilistic soil moisture dynamics. Adv Water Resour 24:707–723

    Article  Google Scholar 

  • Lal R, Stewart BA (2017) Urban soils. CRC Press, Milton, UK

    Book  Google Scholar 

  • Lee S-H, Park S-U (2008) A vegetated urban canopy model for meteorological and environmental modelling. Bound-Layer Meteorol 126:73–102

    Article  Google Scholar 

  • Lee H, Mayer H, Chen L (2016) Contribution of trees and grasslands to the mitigation of human heat stress in a residential district of Freiburg, Southwest Germany. Landsc Urban Plan 148:37–50

    Article  Google Scholar 

  • Lemonsu A, Viguié V, Daniel M, Masson V (2015) Vulnerability to heat waves: impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Clim 14:586–605

    Article  Google Scholar 

  • Leopold LB (1968) Hydrology for urban land planning: a guidebook on the hydrologic effects of urban land use. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Lerner DN (1990) Groundwater recharge in urban areas, atmospheric environment. Part B. Urban Atmos 24:29–33

    Google Scholar 

  • Lerner DN (2002) Identifying and quantifying urban recharge: a review. Hydrogeol J 10:143–152

    Article  Google Scholar 

  • Lhomme J, Bouvier C, Perrin J-L (2004) Applying a GIS-based geomorphological routing model in urban catchments. J Hydrol 299:203–216

    Article  Google Scholar 

  • Lindberg S, Nielsen J, Carr R (1989) An integrated PC-modelling system for hydraulic analysis of drainage systems In: Australasian conference on technical computing in the water industry, Melbourne, VIC

    Google Scholar 

  • Litvak E, Pataki DE (2016) Evapotranspiration of urban lawns in a semi-arid environment: an in situ evaluation of microclimatic conditions and watering recommendations. J Arid Environ 134:87–96

    Article  Google Scholar 

  • Litvak E, Mccarthy HR, Pataki DE (2011) Water relations of coast redwood planted in the semi-arid climate of southern California. Plant Cell Environ 34:1384–1400

    Article  PubMed  Google Scholar 

  • Litvak E, Mccarthy HR, Pataki DE (2012) Transpiration sensitivity of urban trees in a semi-arid climate is constrained by xylem vulnerability to cavitation. Tree Physiol 32:373–388

    Article  PubMed  Google Scholar 

  • Litvak E, Manago K, Hogue T, Pataki D (2017) Evapotranspiration of urban landscapes in Los Angeles, California at the municipal scale. Water Resour Res 53(5):4236–4252

    Article  Google Scholar 

  • Liu M, Tian H, Yang Q, Yang J, Song X, Lohrenz SE, Cai WJ (2013) Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour Res 49:1988–2012

    Article  Google Scholar 

  • Livesley SJ, Dougherty BJ, Smith AJ, Navaud D, Wylie LJ, Arndt SK (2010) Soil-atmosphere exchange of carbon dioxide, methane and nitrous oxide in urban garden systems: impact of irrigation, fertiliser and mulch. Urban Ecosyst 13:273–293

    Article  Google Scholar 

  • Livesley S, Baudinette B, Glover D (2014) Rainfall interception and stem flow by eucalypt street trees–the impacts of canopy density and bark type. Urban For Urban Green 13:192–197

    Article  Google Scholar 

  • Livesley S, Ossola A, Threlfall C, Hahs A, Williams N (2016a) Soil carbon and carbon/nitrogen ratio change under tree canopy, tall grass, and turf grass areas of urban green space. J Environ Qual 45:215–223

    Article  CAS  PubMed  Google Scholar 

  • Livesley SJ, Mcpherson GM, Calfapietra C (2016b) The urban forest and ecosystem services: impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J Environ Qual 45:119–124

    Article  CAS  PubMed  Google Scholar 

  • Locatelli L, Mark O, Mikkelsen PS, Arnbjerg-Nielsen K, Deletic A, Roldin M, Binning PJ (2017) Hydrologic impact of urbanization with extensive stormwater infiltration. J Hydrol 544:524–537

    Article  Google Scholar 

  • Lorenz K, Lal R (2009) Biogeochemical C and N cycles in urban soils. Environ Int 35:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lyytimäki J (2014) Bad nature: newspaper representations of ecosystem disservices. Urban For Urban Green 13:418–424

    Article  Google Scholar 

  • MA (2003) Millennium ecosystem assessment. Ecosystems and human well-being: a framework for assessment

    Google Scholar 

  • Martin C, Stabler L (2002) Plant gas exchange and water status in urban desert landscapes. J Arid Environ 51:235–254

    Article  Google Scholar 

  • Masson V (2006) Urban surface modeling and the meso-scale impact of cities. Theor Appl Climatol 84:35–45

    Article  Google Scholar 

  • Matthews T, Lo AY, Byrne JA (2015) Reconceptualizing green infrastructure for climate change adaptation: barriers to adoption and drivers for uptake by spatial planners. Landsc Urban Plan 138:155–163

    Article  Google Scholar 

  • Mccarthy HR, Pataki DE (2010) Drivers of variability in water use of native and non-native urban trees in the greater Los Angeles area. Urban Ecosyst 13:393–414

    Article  Google Scholar 

  • Mccarthy HR, Pataki DE, Jenerette GD (2011) Plant water-use efficiency as a metric of urban ecosystem services. Ecol Appl 21:3115–3127

    Article  Google Scholar 

  • Mcdonald RI, Douglas I, Revenga C, Hale R, Grimm N, Grönwall J, Fekete B (2011) Global urban growth and the geography of water availability, quality, and delivery. AMBIO J Hum Environ 40:437–446

    Article  Google Scholar 

  • Mcpherson EG, Peper PJ (2012) Urban tree growth modeling. Arboricult Urban For 38:175–183

    Google Scholar 

  • Mcpherson G, Simpson JR, Peper PJ, Maco SE, Xiao Q (2005) Municipal forest benefits and costs in five US cities. J For 103:411–416

    Google Scholar 

  • Mejía A, Daly E, Rossel F, Jovanovic T, Gironás J (2014) A stochastic model of streamflow for urbanized basins. Water Resour Res 50:1984–2001

    Article  Google Scholar 

  • Menz MH, Dixon KW, Hobbs RJ (2013) Hurdles and opportunities for landscape-scale restoration. Science 339:526–527

    Article  CAS  PubMed  Google Scholar 

  • Miao S, Chen F, Li Q, Fan S (2011) Impacts of urban processes and urbanization on summer precipitation: a case study of heavy rainfall in Beijing on 1 August 2006. J Appl Meteorol Climatol 50:806–825

    Article  Google Scholar 

  • Milesi C, Running SW, Elvidge CD, Dietz JB, Tuttle BT, Nemani RR (2005) Mapping and modeling the biogeochemical cycling of turf grasses in the United States. Environ Manag 36:426–438

    Article  Google Scholar 

  • Morakinyo TE, Dahanayake KKC, Ng E, Chow CL (2017) Temperature and cooling demand reduction by green-roof types in different climates and urban densities: a co-simulation parametric study. Energ Buildings 145:226–237

    Article  Google Scholar 

  • Murari KK, Ghosh S, Patwardhan A, Daly E, Salvi K (2015) Intensification of future severe heat waves in India and their effect on heat stress and mortality. Reg Environ Chang 15:569–579

    Article  Google Scholar 

  • Ng B, Hutyra L, Nguyen H, Cobb A, Kai F, Harvey C, Gandois L (2015) Carbon fluxes from an urban tropical grassland. Environ Pollut 203:227–234

    Article  CAS  PubMed  Google Scholar 

  • Nice KA, Coutts AM, Tapper NJ (2018) Development of the VTUF-3D v1. 0 urban micro-climate model to support assessment of urban vegetation influences on human thermal comfort. Urban Clim 24:1052–1076

    Article  Google Scholar 

  • Niu GY, Troch PA, Paniconi C, Scott RL, Durcik M, Zeng X, Huxman T, Goodrich D, Pelletier J (2014) An integrated modelling framework of catchment-scale ecohydrological processes: 2. The role of water subsidy by overland flow on vegetation dynamics in a semi-arid catchment. Ecohydrology 7:815–827

    Article  Google Scholar 

  • Niyogi D, Pyle P, Lei M, Arya SP, Kishtawal CM, Shepherd M, Chen F, Wolfe B (2011) Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis urban region. J Appl Meteorol Climatol 50:1129–1144

    Article  Google Scholar 

  • Nordbo A, Järvi L, Haapanala S, Wood CR, Vesala T (2012) Fraction of natural area as main predictor of net CO2 emissions from cities. Geophys Res Lett 39:L20802

    Article  CAS  Google Scholar 

  • Nowak DJ, Greenfield EJ (2012) Tree and impervious cover in the United States. Landsc Urban Plan 107:21–30

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24

    Google Scholar 

  • Oke TR (1987) Boundary layer climates. Routledge, London

    Google Scholar 

  • Oke TR, Crowther J, Mcnaughton K, Monteith J, Gardiner B (1989) The micrometeorology of the urban forest. Philos Trans R Soc Lond B Biol Sci 324:335–349

    Article  Google Scholar 

  • Oliveira S, Andrade H, Vaz T (2011) The cooling effect of green spaces as a contribution to the mitigation of urban heat: a case study in Lisbon. Build Environ 46:2186–2194

    Article  Google Scholar 

  • Owuor SO, Butterbach-Bahl K, Guzha A, Rufino M, Pelster D, Díaz-Pinés E, Breuer L (2016) Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol Process 5:16

    Article  Google Scholar 

  • Pace R, Biber P, Pretzsch H, Grote R (2018) Modeling ecosystem services for park trees: sensitivity of i-tree eco simulations to light exposure and tree species classification. Forests 9:89

    Article  Google Scholar 

  • Palmer MA, Liu J, Matthews JH, Mumba M, D’odorico P (2015) Manage water in a green way. Science 349(6248):584–585

    Article  CAS  PubMed  Google Scholar 

  • Pandeya B, Buytaert W, Zulkafli Z, Karpouzoglou T, Mao F, Hannah D (2016) A comparative analysis of ecosystem services valuation approaches for application at the local scale and in data scarce regions. Ecosyst Serv 22:250–259

    Article  Google Scholar 

  • Parnell S, Schewenius M, Sendstad M, Seto KC, Wilkinson C (2013) Urbanization, biodiversity and ecosystem services: challenges and opportunities. Springer, Dordrecht

    Google Scholar 

  • Passarello M, Sharp J Jr, Pierce S (2012) Estimating urban-induced artificial recharge: a case study for Austin, TX. Environ Eng Geosci 18:25–36

    Article  Google Scholar 

  • Pataki DE, Boone CG, Hogue TS, Jenerette GD, Mcfadden JP, Pincetl S (2011a) Socio-ecohydrology and the urban water challenge. Ecohydrology 4:341–347

    Article  Google Scholar 

  • Pataki DE, Carreiro MM, Cherrier J, Grulke NE, Jennings V, Pincetl S, Pouyat RV, Whitlow TH, Zipperer WC (2011b) Coupling biogeochemical cycles in urban environments: ecosystem services, green solutions, and misconceptions. Front Ecol Environ 9:27–36

    Article  Google Scholar 

  • Pataki DE, Mccarthy HR, Litvak E, Pincetl S (2011c) Transpiration of urban forests in the Los Angeles metropolitan area. Ecol Appl 21:661–677

    Article  PubMed  Google Scholar 

  • Pawlak W, Fortuniak K (2016) Eddy covariance measurements of the net turbulent methane flux in the city Centre–results of 2-year campaign in Łódź, Poland. Atmos Chem Phys 16:8281

    Article  CAS  Google Scholar 

  • Peters EB, Mcfadden JP, Montgomery RA (2010) Biological and environmental controls on tree transpiration in a suburban landscape. J Geophys Res Biogeo 115:G04006

    Article  Google Scholar 

  • Petrucci G, Bonhomme C (2014) The dilemma of spatial representation for urban hydrology semi-distributed modelling: trade-offs among complexity, calibration and geographical data. J Hydrol 517:997–1007

    Article  Google Scholar 

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J N Am Benthol Soc 16:391–409

    Article  Google Scholar 

  • Porporato A, D’odorico P, Laio F, Rodriguez-Iturbe I (2003) Hydrologic controls on soil carbon and nitrogen cycles. I. Modeling scheme. Adv Water Resour 26:45–58

    Article  CAS  Google Scholar 

  • Potchter O, Cohen P, Bitan A (2006) Climatic behavior of various urban parks during hot and humid summer in the Mediterranean city of Tel Aviv, Israel. Int J Climatol 26:1695–1711

    Article  Google Scholar 

  • Pouyat R, Groffman P, Yesilonis I, Hernandez L (2002) Soil carbon pools and fluxes in urban ecosystems. Environ Pollut 116:S107–S118

    Article  CAS  PubMed  Google Scholar 

  • Pouyat RV, Pataki DE, Belt KT, Groffman PM, Hom J, Band LE (2007) Effects of urban land-use change on biogeochemical cycles. In: Terrestrial ecosystems in a changing world. Springer, Berlin, pp 45–58

    Chapter  Google Scholar 

  • Price K (2011) Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: a review. Prog Phys Geogr 35:465–492

    Article  Google Scholar 

  • Raciti SM, Burgin AJ, Groffman PM, Lewis DN, Fahey TJ (2011) Denitrification in suburban lawn soils. J Environ Qual 40:1932–1940

    Article  CAS  PubMed  Google Scholar 

  • Randelovic A, Zhang K, Jacimovic N, Mccarthy D, Deletic A (2016) Stormwater biofilter treatment model (MPiRe) for selected micro-pollutants. Water Res 89:180–191

    Article  CAS  PubMed  Google Scholar 

  • Redfern TW, Macdonald N, Kjeldsen TR, Miller JD, Reynard N (2016) Current understanding of hydrological processes on common urban surfaces. Prog Phys Geogr 40:699–713

    Article  Google Scholar 

  • Revelli R, Porporato A (2018) Ecohydrological model for the quantification of ecosystem services provided by urban street trees. Urban Ecosyst 21(3):1–16

    Article  Google Scholar 

  • Roberts BR (1977) The response of urban trees to abiotic stress [moisture, temperature, light, pesticides]. J Arboric 3(4):75–78

    CAS  Google Scholar 

  • Rodriguez F, Morena F, Andrieu H (2005) Development of a distributed hydrological model based on urban databanks–production processes of URBS. Water Sci Technol 52:241–248

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287(5459):1793–1796

    Article  CAS  PubMed  Google Scholar 

  • Ryu Y-H, Bou-Zeid E, Wang Z-H, Smith JA (2016) Realistic representation of trees in an urban canopy model. Bound-Layer Meteorol 159:193–220

    Article  Google Scholar 

  • Saaroni H, Ziv B (2010) Estimating the urban heat island contribution to urban and rural air temperature differences over complex terrain: application to an arid city. J Appl Meteorol Climatol 49:2159–2166

    Article  Google Scholar 

  • Salamanca F, Zhang Y, Barlage M, Chen F, Mahalov A, Miao S (2018) Evaluation of the WRF-urban modeling system coupled to Noah and Noah-MP land surface models over a semiarid urban environment. J Geophys Res Atmos 123(5):2387–2408

    Article  Google Scholar 

  • Salvadore E, Bronders J, Batelaan O (2015) Hydrological modelling of urbanized catchments: a review and future directions. J Hydrol 529:62–81

    Article  Google Scholar 

  • Sander HA (2016) Assessing impacts on urban greenspace, waterways, and vegetation in urban planning. J Environ Plan Manag 59:461–479

    Article  Google Scholar 

  • Sanusi R, Johnstone D, May P, Livesley SJ (2016) Street orientation and side of the street greatly influence the microclimatic benefits street trees can provide in summer. J Environ Qual 45:167–174

    Article  CAS  PubMed  Google Scholar 

  • Schatz J, Kucharik CJ (2015) Urban climate effects on extreme temperatures in Madison, Wisconsin, USA. Environ Res Lett 10:094024

    Article  Google Scholar 

  • Seto KC, Shepherd JM (2009) Global urban land-use trends and climate impacts. Curr Opin Environ Sustain 1:89–95

    Article  Google Scholar 

  • Seto KC, Fragkias M, Güneralp B, Reilly MK (2011) A meta-analysis of global urban land expansion. PLoS One 6:e23777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seto KC, Güneralp B, Hutyra LR (2012) Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc Natl Acad Sci 109:16083–16088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahidan MF, Shariff MK, Jones P, Salleh E, Abdullah AM (2010) A comparison of Mesua ferrea L. and Hura crepitans L. for shade creation and radiation modification in improving thermal comfort. Landsc Urban Plan 97:168–181

    Article  Google Scholar 

  • Shashua-Bar L, Pearlmutter D, Erell E (2011) The influence of trees and grass on outdoor thermal comfort in a hot-arid environment. Int J Climatol 31:1498–1506

    Article  Google Scholar 

  • Shem W, Shepherd M (2009) On the impact of urbanization on summertime thunderstorms in Atlanta: two numerical model case studies. Atmos Res 92:172–189

    Article  Google Scholar 

  • Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9:1–27

    Article  Google Scholar 

  • Shepherd JM (2006) Evidence of urban-induced precipitation variability in arid climate regimes. J Arid Environ 67:607–628

    Article  Google Scholar 

  • Shields C, Tague C (2015) Ecohydrology in semiarid urban ecosystems: modeling the relationship between connected impervious area and ecosystem productivity. Water Resour Res 51:302–319

    Article  Google Scholar 

  • Shiflett SA, Liang LL, Crum SM, Feyisa GL, Wang J, Jenerette GD (2017) Variation in the urban vegetation, surface temperature, air temperature nexus. Sci Total Environ 579:495–505

    Article  CAS  PubMed  Google Scholar 

  • Shuster WD, Bonta J, Thurston H, Warnemuende E, Smith D (2005) Impacts of impervious surface on watershed hydrology: a review. Urban Water J 2:263–275

    Article  Google Scholar 

  • Sieghardt M, Mursch-Radlgruber E, Paoletti E, Couenberg E, Dimitrakopoulus A, Rego F, Hatzistathis A, Randrup TB (2005) The abiotic urban environment: impact of urban growing conditions on urban vegetation. In: Urban forests and trees. Springer, Berlin, pp 281–323

    Chapter  Google Scholar 

  • Simon H, Lindén J, Hoffmann D, Braun P, Bruse M, Esper J (2018) Modeling transpiration and leaf temperature of urban trees–a case study evaluating the microclimate model ENVI-met against measurement data. Landsc Urban Plan 174:33–40

    Article  Google Scholar 

  • Sirakaya A, Cliquet A, Harris J (2017) Ecosystem services in cities: towards the international legal protection of ecosystem services in urban environments. Ecosyst Serv 29:205–212

    Article  Google Scholar 

  • Smith JA, Baeck ML, Villarini G, Welty C, Miller AJ, Krajewski WF (2012) Analyses of a long-term, high-resolution radar rainfall data set for the Baltimore metropolitan region. Water Resour Res 48:W04504

    Google Scholar 

  • Sofer M, Potchter O (2006) The urban heat island of a city in an arid zone: the case of Eilat, Israel. Theor Appl Climatol 85:81–88

    Article  Google Scholar 

  • Spronken-Smith R, Oke T (1998) The thermal regime of urban parks in two cities with different summer climates. Int J Remote Sens 19:2085–2104

    Article  Google Scholar 

  • Stabler LB, Martin CA, Brazel AJ (2005) Microclimates in a desert city were related to land use and vegetation index. Urban For Urban Green 3:137–147

    Article  Google Scholar 

  • TEEB (2009) The economics of ecosystems and biodiversity: the ecological and economic foundation. Earthscan, London

    Google Scholar 

  • Toparlar Y, Blocken B, Maiheu B, Van Heijst G (2017) A review on the CFD analysis of urban microclimate. Renew Sust Energ Rev 80:1613–1640

    Article  Google Scholar 

  • Townsend-Small A, Czimczik CI (2010) Carbon sequestration and greenhouse gas emissions in urban turf. Geophys Res Lett 37:L02707

    Google Scholar 

  • Tyrväinen L, Pauleit S, Seeland K, De Vries S (2005) Benefits and uses of urban forests and trees. Springer, Berlin, pp 81–114

    Book  Google Scholar 

  • UN (2015) World urbanization prospects: the 2014 revision, (ST/ESA/SER.A/366). United Nations, Department of Economic and Social Affairs, Population Division

    Google Scholar 

  • Upmanis H, Eliasson I, Lindqvist S (1998) The influence of green areas on nocturnal temperatures in a high latitude city (Göteborg, Sweden). Int J Climatol 18:681–700

    Article  Google Scholar 

  • Van Delden L, Larsen E, Rowlings D, Scheer C, Grace P (2016) Establishing turf grass increases soil greenhouse gas emissions in peri-urban environments. Urban Ecosyst 19:749–762

    Article  Google Scholar 

  • Van Loon AF, Gleeson T, Clark J, Van Dijk AI, Stahl K, Hannaford J, Di Baldassarre G, Teuling AJ, Tallaksen LM, Uijlenhoet R (2016a) Drought in the Anthropocene. Nat Geosci 9:89

    Article  Google Scholar 

  • Van Loon AF, Stahl K, Di Baldassarre G, Clark J, Rangecroft S, Wanders N, Gleeson T, Van Dijk AI, Tallaksen LM, Hannaford J (2016b) Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches. Hydrol Earth Syst Sci 20:3631

    Article  Google Scholar 

  • Vezzaro L, Eriksson E, Ledin A, Mikkelsen PS (2011) Modelling the fate of organic micropollutants in stormwater ponds. Sci Total Environ 409:2597–2606

    Article  CAS  PubMed  Google Scholar 

  • Vezzaro L, Eriksson E, Ledin A, Mikkelsen PS (2012) Quantification of uncertainty in modelled partitioning and removal of heavy metals (Cu, Zn) in a stormwater retention pond and a biofilter. Water Res 46:6891–6903

    Article  CAS  PubMed  Google Scholar 

  • Vico G, Porporato A (2011) From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 34:263–271

    Article  Google Scholar 

  • Vico G, Revelli R, Porporato A (2014) Ecohydrology of street trees: design and irrigation requirements for sustainable water use. Ecohydrology 7:508–523

    Article  Google Scholar 

  • Volo TJ, Vivoni ER, Martin CA, Earl S, Ruddell BL (2014) Modelling soil moisture, water partitioning, and plant water stress under irrigated conditions in desert urban areas. Ecohydrology 7:1297–1313

    Google Scholar 

  • Von Döhren P, Haase D (2015) Ecosystem disservices research: a review of the state of the art with a focus on cities. Ecol Indic 52:490–497

    Article  Google Scholar 

  • Wachinger G, Fiedler S, Zepp K, Gattinger A, Sommer M, Roth K (2000) Variability of soil methane production on the micro-scale: spatial association with hot spots of organic material and Archaeal populations. Soil Biol Biochem 32:1121–1130

    Article  CAS  Google Scholar 

  • Wagner I, Breil P (2013) The role of ecohydrology in creating more resilient cities. Ecohydrol Hydrobiol 13:113–134

    Article  Google Scholar 

  • Wang J, Endreny TA, Nowak DJ (2008) Mechanistic simulation of tree effects in an urban water balance model. JAWRA J Am Water Resour Assoc 44:75–85

    Article  Google Scholar 

  • Wong T, Brown RR (2009) The water sensitive city: principles for practice. Water Sci Technol 60:673–682

    Article  CAS  PubMed  Google Scholar 

  • Wong TH, Fletcher TD, Duncan HP, Coleman JR, Jenkins GA (2002) A model for urban stormwater improvement: conceptualization. Global Solutions for Urban Drainage, Reston, VA, pp 1–14

    Google Scholar 

  • Xiao Q, Mcpherson EG (2002) Rainfall interception by Santa Monica’s municipal urban forest. Urban Ecosyst 6:291–302

    Article  Google Scholar 

  • Xiao Q, Mcpherson EG, Simpson JR, Ustin SL (1998) Rainfall interception by Sacramento’s urban forest. J Arboric 24:235–244

    Google Scholar 

  • Xiao Q, Mcpherson EG, Ustin SL, Grismer ME, Simpson JR (2000) Winter rainfall interception by two mature open-grown trees in Davis, California. Hydrol Process 14:763–784

    Article  Google Scholar 

  • Xiao Q, Mcpherson EG, Simpson JR, Ustin SL (2007) Hydrologic processes at the urban residential scale. Hydrol Process 21:2174–2188

    Article  Google Scholar 

  • Yang Y, Endreny TA, Nowak DJ (2015) Simulating the effect of flow path roughness to examine how green infrastructure restores urban runoff timing and magnitude. Urban For Urban Green 14:361–367

    Article  Google Scholar 

  • Yow DM (2007) Urban heat islands: observations, impacts, and adaptation. Geogr Compass 1:1227–1251

    Article  Google Scholar 

  • Yu C, Hien WN (2006) Thermal benefits of city parks. Energ Buildings 38:105–120

    Article  Google Scholar 

  • Yu M, Liu Y (2015) The possible impact of urbanization on a heavy rainfall event in Beijing. J Geophys Res Atmos 120:8132–8143

    Article  Google Scholar 

  • Zhang CL, Chen F, Miao SG, Li QC, Xia XA, Xuan CY (2009) Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J Geophys Res Atmos 114:D02116

    Google Scholar 

  • Zhang Z, Lv Y, Pan H (2013) Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For Urban Green 12:323–329

    Article  Google Scholar 

  • Zhang W, Wang K, Luo Y, Fang Y, Yan J, Zhang T, Zhu X, Chen H, Wang W, Mo J (2014a) Methane uptake in forest soils along an urban-to-rural gradient in Pearl River Delta, South China. Sci Rep 4:5120

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Smith JA, Luo L, Wang Z, Baeck ML (2014b) Urbanization and rainfall variability in the Beijing metropolitan region. J Hydrometeorol 15:2219–2235

    Article  Google Scholar 

  • Zhao L, Lee X, Smith RB, Oleson K (2014) Strong contributions of local background climate to urban heat islands. Nature 511:216–219

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Oppenheimer M, Zhu Q, Baldwin JW, Ebi KL, Bou-Zeid E, Guan K, Liu X (2018) Interactions between urban heat islands and heat waves. Environ Res Lett 13:034003

    Article  Google Scholar 

  • Zhou D, Zhao S, Zhang L, Liu S (2016) Remotely sensed assessment of urbanization effects on vegetation phenology in China’s 32 major cities. Remote Sens Environ 176:272–281

    Article  Google Scholar 

  • Zipper SC, Schatz J, Singh A, Kucharik CJ, Townsend PA, Loheide Ii SP (2016) Urban heat island impacts on plant phenology: intra-urban variability and response to land cover. Environ Res Lett 11:054023

    Article  Google Scholar 

  • Zipper SC, Schatz J, Kucharik CJ, Loheide SP (2017) Urban heat island-induced increases in evapotranspirative demand. Geophys Res Lett 44:873–881

    Article  Google Scholar 

  • Zoppou C (2001) Review of urban storm water models. Environ Model Softw 16:195–231

    Article  Google Scholar 

Download references

Acknowledgments

Valentina Marchionni and Edoardo Daly thank the support of the Australian Research Council and the City of Greater Dandenong and Moonee Valley City councils through the Linkage project LP150100901. Roberto Revelli acknowledges the support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement “ECO.G.U.S.—ECOsystem services for resilient and sustainable cities: an ecohydrological approach for Green Urban Spaces” (#701914).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Valentina Marchionni or Edoardo Daly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marchionni, V., Revelli, R., Daly, E. (2019). Ecohydrology of Urban Ecosystems. In: D'Odorico, P., Porporato, A., Wilkinson Runyan, C. (eds) Dryland Ecohydrology. Springer, Cham. https://doi.org/10.1007/978-3-030-23269-6_20

Download citation

Publish with us

Policies and ethics