Skip to main content

Imperfection Sensitivity Laws

  • Chapter
  • First Online:
Imperfect Bifurcation in Structures and Materials

Part of the book series: Applied Mathematical Sciences ((AMS,volume 149))

Abstract

The strength of structures undergoing bifurcation is affected by imperfections. The mechanism of such a dependence of the strength has been conventionally described by “imperfection sensitivity laws.” We follow the Liapunov–Schmidt–Koiter approach and introduce imperfection sensitivity laws for simple critical points of various kinds that are described in Chap. 2, which is a prerequisite of this chapter. This chapter lays a foundation of Chaps. 46 and is extended to a system with group symmetry in Chap. 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A direct method to compute the relation (3.2) is to solve simultaneously the extended system consisting of the nonlinear governing equation (3.1) and the criticality condition \(\det \left (\partial \boldsymbol {F}/\partial \boldsymbol {u}\right )=0 \). For the analysis of the extended system, see, for example, Seydel, 1979, [173, 174]; Werner and Spence, 1984 [197]; and Wriggers and Simo, 1990 [201].

  2. 2.

    The imperfection sensitivity of simple structures was observed experimentally by Roorda, 1965 [163]. Thompson and Hunt, 1973 [181] formulated the imperfection sensitivity law of a system with a single imperfection parameter through the perturbation to the total potential energy function of the system. Hunt, 1977 [70] combined this approach with catastrophe theory to determine imperfection sensitivity. See also textbooks by Godoy, 2000 [54] and Ohsaki and Ikeda, 2007 [148].

  3. 3.

    A nearly coincidental pair of points was observed for a stressed atomic crystal lattice (Thompson and Schorrock, 1975 [183]; and Ikeda, Providéncia, and Hunt, 1993 [96]) and for steel specimens (Needleman, 1972 [141]; and Hutchinson and Miles, 1974 [72]). A more account of hilltop bifurcation points, which are parametric critical points, can be found in Ikeda, Oide, and Terada, 2002 [94]; Ikeda, Ohsaki, and Kanno, 2005 [93]; and Ohsaki and Ikeda, 2006 [147], 2007 [148].

  4. 4.

    This analysis is based on Okazawa et al., 2002 [150].

References

  1. Godoy, L.A. (2000) Theory of Elastic Stability—Analysis and Sensitivity. Taylor & Francis, Philadelphia.

    Google Scholar 

  2. Hunt, G.W. (1977) Imperfection-sensitivity of semi-symmetric branching. Proc. Roy. Soc. London Ser. A 357, 193–211.

    Article  MathSciNet  Google Scholar 

  3. Hutchinson, J.W., Miles, J.P. (1974) Bifurcation analysis of the onset of necking in an elastic/plastic cylinder under uniaxial tension. J. Mech. Phys. Solids 22, 61–71.

    Article  Google Scholar 

  4. Ikeda, K., Kitada, T., Matsumura, M., Yamakawa Y. (2007) Imperfection sensitivity of ultimate buckling strength of elastic–plastic square plates under compression. Internat. J. Nonlinear Mechanics 42, 529–541.

    Article  Google Scholar 

  5. Ikeda, K., Murota, K. (1990) Critical initial imperfection of structures. Internat. J. Solids Structures 26 (8), 865–886.

    Article  Google Scholar 

  6. Ikeda, K., Ohsaki, M., Kanno, Y. (2005) Imperfection sensitivity of hilltop branching points of systems with dihedral group symmetry. Internat. J. Nonlinear Mechanics 40 (5), 755–774.

    Article  MathSciNet  Google Scholar 

  7. Ikeda, K., Oide, K., Terada, K. (2002) Imperfection sensitive strength variation at hilltop bifurcation point. Internat. J. Engrg. Sci. 40 (7), 743–772.

    Article  MathSciNet  Google Scholar 

  8. Ikeda, K., Providéncia, P., Hunt, G.W. (1993) Multiple equilibria for unlinked and weakly-linked cellular forms. Internat. J. Solids Structures 30 (3), 371–384.

    Article  Google Scholar 

  9. Koiter, W.T. (1945) On the Stability of Elastic Equilibrium. Dissertation. Delft, Holland (English translation: NASA Technical Translation F10: 833, 1967).

    Google Scholar 

  10. Needleman, A. (1972) A numerical study of necking in circular cylindrical bars. J. Mech. Phys. Solids 20, 111–127.

    Article  Google Scholar 

  11. Ohsaki, M., Ikeda, K. (2006) Imperfection sensitivity analysis of hill-top branching with many symmetric bifurcation points. Internat. J. Solids Structures 43 (16), 4704–4719.

    Article  Google Scholar 

  12. Ohsaki, M., Ikeda, K. (2007) Stability and Optimization of Structures—Generalized Sensitivity Analysis. Mechanical Engineering Series, Springer-Verlag, New York.

    Google Scholar 

  13. Okazawa, S., Oide, K., Ikeda, K., Terada, K. (2002) Imperfection sensitivity and probabilistic variation of tensile strength of steel members. Internat. J. Solids Structures, 39 (6), 1651–1671.

    Article  Google Scholar 

  14. Roorda, J. (1965) The Instability of Imperfect Elastic Structures. Ph.D. Dissertation. University of London.

    Google Scholar 

  15. Seydel, R. (1979) Numerical computation of branch points in ordinary differential equations. Numer. Math. 32, 51–68.

    Article  MathSciNet  Google Scholar 

  16. Seydel, R. (1979) Numerical computation of branch points in nonlinear equations. Numer. Math. 33, 339–352.

    Article  MathSciNet  Google Scholar 

  17. Thompson, J.M.T., Hunt, G.W. (1973) A General Theory of Elastic Stability. Wiley, New York.

    MATH  Google Scholar 

  18. Thompson, J.M.T., Schorrock, P.A. (1975) Bifurcation instability of an atomic lattice. J. Mech. Phys. Solids 23, 21–37.

    Article  Google Scholar 

  19. van der Waerden, B.L. (1955) Algebra. Springer-Verlag, New York.

    Book  Google Scholar 

  20. von Kármán, T., Dunn, L.G., Tsien, H.S. (1940) The influence of curvature on the buckling characteristics of structures. J. Aero. Sci. 7 (7), 276–289.

    Article  MathSciNet  Google Scholar 

  21. Werner, B., Spence, A. (1984) The computation of symmetry-breaking bifurcation points. SIAM J. Numer. Anal. 21 (2), 388–399.

    Article  MathSciNet  Google Scholar 

  22. Wriggers, P., Simo, J.C. (1990) A general procedure for the direct computation of turning and bifurcation points. Internat. J. Numer. Methods Engrg. 30, 155–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ikeda, K., Murota, K. (2019). Imperfection Sensitivity Laws. In: Imperfect Bifurcation in Structures and Materials. Applied Mathematical Sciences, vol 149. Springer, Cham. https://doi.org/10.1007/978-3-030-21473-9_3

Download citation

Publish with us

Policies and ethics