Skip to main content

POD-DEIM Model Order Reduction for the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System

  • Conference paper
  • First Online:
  • 622 Accesses

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 36))

Abstract

We apply POD-DEIM model order reduction to a 0D/1D model used to simulate the propagation of action potentials through the myocardium or along skeletal muscle fibers. This corresponding system of ODEs (reaction) and PDEs (diffusion) is called the monodomain equation. 0D sets of ODEs describing the ionic currents flowing across the cell membrane are coupled along muscle fibers through a 1D diffusion process for the transmembrane potential. Due to the strong coupling of the transmembrane potential and other state variables describing the behavior of the membrane, a total reduction strategy including all degrees of freedom turns out to be more efficient than a reduction of only the transmembrane potential. The total reduction approach is four orders of magnitude more accurate than partial reduction and shows a faster convergence in the number of POD modes with respect to the mesh refinement. A speedup of 2.7 is achieved for a 1D mesh with 320 nodes. Considering the DEIM approximation in combination with the total reduction, the nonlinear functions corresponding to the ionic state variables are also approximated in addition to the nonlinear ionic current in the monodomain equation. We observe that the same number of DEIM interpolation points as the number of POD modes is the optimal choice regarding stability, accuracy and runtime for the current POD-DEIM approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Snapshots may be subsequent time steps or only a selection of time steps. In general, snapshots may be based on parameters independent of time. Therefore, we do not use parenthesis for the superscripts denoting the snapshots as we do for time step data.

  2. 2.

    http://www.ians.uni-stuttgart.de/MoRePaS/software/kermor/.

References

  1. Pullan, A.J., Buist, M.L., Cheng, L.K.: Mathematically Modelling the Electrical Activity of the Heart: From Cell to Body Surface and Back Again. World Scientific Publishing Company, Singapore (2005)

    Google Scholar 

  2. Röhrle, O., Davidson, J.B., Pullan, A.J.: A physiologically based, multi-scale model of skeletal muscle structure and function. Front. Physiol. 3, (2012)

    Google Scholar 

  3. Heidlauf, T., Röhrle, O.: Modeling the Chemoelectromechanical Behavior of Skeletal Muscle Using the Parallel Open-Source Software Library OpenCMISS. Computational and Mathematical Methods in Medicine 1–14 (2013)

    Google Scholar 

  4. Heidlauf, T., Röhrle, O.: A multiscale chemo-electro-mechanical skeletal muscle model to analyze muscle contraction and force generation for different muscle fiber arrangements. Front. Physiol. 5(498), 1–14 (2014)

    Google Scholar 

  5. Mordhorst, M., Heidlauf, T., Röhrle, O.: Predicting electromyographic signals under realistic conditions using a multiscale chemo-electro-mechanical finite element model. Interface Focus 5(2), 1–11 (2015)

    Article  Google Scholar 

  6. Heidlauf, T., Klotz, T., Rode, C., et al.: A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction. Biomech. Model. Mechanobiol. 15(6), 1423–1437 (2016)

    Article  Google Scholar 

  7. Heidlauf, T., Klotz, T., Rode, C., Siebert, T., Röhrle, O.: A continuum-mechanical skeletal muscle model including actin-titin interaction predicts stable contractions on the descending limb of the force-length relation. PLOS Comput. Biol. 13(10), 1–25, 10 (2017)

    Article  Google Scholar 

  8. Miller, W.T., Geselowitz, D.B.: Simulation studies of the electrocardiogram. i. the normal heart. Circ. Res. 43(2), 301–315 (1978)

    Article  Google Scholar 

  9. Tung, L.: A bi-domain model for describing ischemic myocardial DC potentials. PhD thesis, Massachusetts Institute of Technology (1978)

    Google Scholar 

  10. Bradley, C.P., Emamy, N., Ertl, T., et al.: Enabling detailed, biophysics-based skeletal muscle models on HPC systems. Front. Physiol. 9 (2018)

    Google Scholar 

  11. Clayton, R.H., Bernus, O., Cherry, E.M., et al.: Models of cardiac tissue electrophysiology: Progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104(1–3), 22–48 (2011)

    Article  Google Scholar 

  12. Kellems, A.R., Chaturantabut, S., Sorensen, D.C., Cox, S.J.: Morphologically accurate reduced order modeling of spiking neurons. J. Comput. Neurosci. 28(3), 477–494 (2010)

    Article  MathSciNet  Google Scholar 

  13. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117(4), 500–544 (1952)

    Article  Google Scholar 

  14. Boulakia, M., Schenone, E., Gerbeau, J-F.: Reduced-order modeling for cardiac electrophysiology. Application to parameter identification. Int. J. Numer. Methods Biomed. Eng. 28(6–7), 727–744 (2012)

    Article  MathSciNet  Google Scholar 

  15. Mitchell, C.C., Schaeffer, D.G.: A two-current model for the dynamics of cardiac membrane. Bull. Math. Biol. 65(5), 767–793 (2003)

    Article  Google Scholar 

  16. Yang, H., Veneziani, A.: Efficient estimation of cardiac conductivities via POD-DEIM model order reduction. Appl. Numer. Math. 115, 180–199 (2017)

    Article  MathSciNet  Google Scholar 

  17. Mordhorst, M., Strecker, T., Wirtz, D., Heidlauf, T., Röhrle, O.: POD-DEIM reduction of computational EMG models. J. Comput. Sci. 19, 86–96 (2017)

    Article  MathSciNet  Google Scholar 

  18. Rogers, J.M., Mc Culloch, A.D.: A collocation-Galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8), 743–757 (1994)

    Article  Google Scholar 

  19. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  Google Scholar 

  20. Wirtz, D.: Model Reduction for Nonlinear Systems: Kernel Methods and Error Estimation. epubli GmbH (2014)

    Google Scholar 

  21. Heidlauf, T.: Chemo-electro-mechanical modelling of the neuromuscular system. Institut fur Mechanik (Bauwesen), Lehrstuhl fur Kontinuumsmechanik, Research Group on Continuum Biomechanics and Mechanobiology, Universität Stuttgart (2015)

    Google Scholar 

  22. Shorten, P.R., O’Callaghan, P., Davidson, J.B., Soboleva, T.K.: A mathematical model of fatigue in skeletal muscle force contraction. J. Muscle Res. Cell Motil. 28(6), 293–313 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Baden-Württemberg Stiftung as part of the DiHu project of the High Performance Computing II program and the Cluster of Excellence for Simulation Technology (EXC 310/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehzat Emamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Emamy, N., Litty, P., Klotz, T., Mehl, M., Röhrle, O. (2020). POD-DEIM Model Order Reduction for the Monodomain Reaction-Diffusion Sub-Model of the Neuro-Muscular System. In: Fehr, J., Haasdonk, B. (eds) IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Bookseries, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-21013-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21013-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21012-0

  • Online ISBN: 978-3-030-21013-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics