Skip to main content

Swirl Generators, Extended Surface Insert and Tangential Injection Devices

  • Chapter
  • First Online:
  • 283 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSTHERMAL))

Abstract

The thermohydraulic performance of different swirl generators, extended surface insert and tangential injection devices has been briefed in this chapter. The continuous swirl flow and decaying swirl flow have been discussed. Correlations for Nusselt number friction factor using these devices have been presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal S, Sharma RP (2016) Numerical investigation of heat transfer enhancement using hybrid vortex generator arrays in fin-and-tube heat exchangers. ASME J Therm Sci Eng Appl 8:031007

    Article  Google Scholar 

  • Ahmed HE, Yusoff MZ (2014) Impact of delta-winglet pair of vortex generators on the thermal and hydraulic performance of a triangular channel using Al2O3–water nano-fluid. ASME J Heat Transf 136:021901

    Article  Google Scholar 

  • Biswas G, Chattopadhyay H (1992) Heat transfer in a channel with built-in wing-type vortex generators. Int J Heat Mass Transf 35(4):803–814

    Article  MATH  Google Scholar 

  • Chen JD, Hsieh SS (1992) Buoyancy effect on the laminar forced convection in a horizontal tube with a longitudinal thin plate insert. Int J Heat Mass Transf 35(1):263–267

    Article  Google Scholar 

  • Chu P, He YL, Tao WQ (2009) Three-dimensional numerical study of flow and heat transfer enhancement using vortex generators in fin-and-tube heat exchangers. ASME J Heat Transf 131:091903

    Article  Google Scholar 

  • Dhir VK, Chang F (1992) Heat transfer enhancement using tangential injection. ASHRAE Trans 98(2):383–390

    Google Scholar 

  • Dhir VK, Tune VX, Chang F, Yu J (1989) Enhancement of forced convection heat transfer using single and multi-stage tangential injection. In: Goldstein RJ, Chow LC, Anderson EE (eds) Heat transfer in high energy heat flux applications, ASME Symp. HTD, vol 119, pp 61–68

    Google Scholar 

  • Du X, Feng L, Yang Y, Yang L (2013) Experimental study on heat transfer enhancement of wavy finned flat tube with longitudinal vortex generator. Appl Therm Eng 50:55–62

    Article  Google Scholar 

  • Eiamsa-ard S, Thianpong C, Eiamsa-ard P, Promvonge P (2009) Convective heat transfer in a circular tube with short-length twisted tape insert. Int Commun Heat Mass Transf 36:365–371

    Article  MATH  Google Scholar 

  • Ghorbani-Tari Z, Wang L, Sunden B (2013) Endwall convective heat transfer around a single bluff body in rectangular channel. In Proc. of 8th world conf. on experimental heat trans., fluid mechanics and thermodynamics, Lisbon, Portugal 316

    Google Scholar 

  • Ghorbani-Tari Z, Wang L, Sunden B (2014) Heat transfer control around an obstacle by using ribs in the downstream region. ASME J Therm Sci Eng 6:041010

    Article  Google Scholar 

  • Ghorbani-Tari Z, Wang L, Sunden B (2016) Heat transfer characteristics around an obstacle controlled by the presence of ribs. Heat Transfer Res 47:893–906

    Article  Google Scholar 

  • He J (2012) Vortex-enhanced heat transfer by a new delta-winglet array. Ph.D. Thesis, University of Illinois, Urbana-Champaign

    Google Scholar 

  • Henze M, Wolfersdorf JV (2011) Influence of approach flow conditions on heat transfer behind vortex generators. Int J Heat Mass Transf 54:279–287

    Article  MATH  Google Scholar 

  • Hilding WE, Coogan CH Jr (1964) Heat transfer and pressure drop in internally finned tubes. In: ASME symposium on air cooled heat exchangers. ASME, New York, pp 57–84

    Google Scholar 

  • Hsieh SS, Huang IW (2000) Experimental studies for heat transfer and pressure drop of laminar flow in horizontal tubes with/without longitudinal inserts

    Google Scholar 

  • Hsieh SS, Wen, M-Y (1996) “Developing three-Dimensional laminar mixed convection in a circular tube inserted with longitudinal Strips,” Int J Heat Mass Transf 39:299–310

    Article  Google Scholar 

  • Hussain S, Liu J, Wang L, Sunden B (2016) Effects on endwall heat transfer by a winglet vortex generator pair mounted upstream of a cylinder. J Enhanc Heat Transf 23(3):241–262

    Article  Google Scholar 

  • Jayavel S, Tiwari S (2008) Numerical study of flow and heat transfer for flow past inline circular tubes built in a rectangular channel in the presence of vortex generators. Numer Heat Transf Part A 54:777–797

    Article  Google Scholar 

  • Kwak KM, Torii K, Nishino K (2005) Simultaneous heat transfer enhancement and pressure loss reduction for finned-tube bundles with the first or two transverse rows of built-in winglets. Exp Thermal Fluid Sci 29:625–632

    Article  Google Scholar 

  • Luo L, Wen F, Wang L, Sunden B, Wang S (2017) On the solar receiver thermal enhancement by using dimple combined with delta winglet vortex generator. Appl Therm Eng 111:586–598

    Article  Google Scholar 

  • Martemianov S, Okulov VL (2004) On heat transfer enhancement in swirl pipe flows. Int J Heat Mass Transf 47(10–11):2379–2393

    Article  MATH  Google Scholar 

  • Moawed M (2011) Heat transfer and friction factor inside elliptic tubes fitted with helical screw-tape inserts. J Renew Sustain Energy 3:1–15

    Article  Google Scholar 

  • Promvonge P, Chompookham T, Kwankaomeng S, Thianpong C (2010) Enhanced heat transfer in a triangular ribbed channel with longitudinal vortex generator. Energy Conserv Manage 51(6):1242–1249

    Article  Google Scholar 

  • Razgatis R, Holman JP (1976) A survey of heat transfer in confined swirl flows. Heat Mass Transf Process 2:831–866

    Google Scholar 

  • Saha SK, Dutta A (2001) Thermohydraulic study of laminar swirl flow through a circular tube fitted with twisted tapes. J Heat Transf 123:417–427

    Article  Google Scholar 

  • Saha SK, Langille P (2002) Heat transfer and pressure drop characteristics of laminar flow through a circular tube with longitudinal strip inserts under uniform wall heat flux. J Heat Transf 124(3):421–432

    Article  Google Scholar 

  • Saha SK, Gaitonde UN, Date AW (1989) Heat transfer and pressure drop characteristics of laminar flow in a circular U tube fitted with regularly spaced twisted-tape elements. Exp Thermal Fluid Sci 2(3):310–322

    Article  Google Scholar 

  • Sarac BA, Bali T (2007) An experimental study on heat transfer and pressure drop characteristics of decaying swirl flow through a circular pipe with a vortex generator. Exp Thermal Fluid Sci 32:158–165

    Article  Google Scholar 

  • Sundar LS, Sharma KV (2008) Experimental investigation of heat transfer and friction factor characteristics in a circular tube with longitudinal strip inserts. J Enhanc Heat Transf 15(4):325–333

    Article  Google Scholar 

  • Tandiroglu A (2006) Irreversibility minimization analysis of transient heat transfer for turbulent flow in a circular tube with baffle inserts. J Enhanc Heat Transf 13(3):215–229

    Article  Google Scholar 

  • Tiggelbeck S, Mitra N, Fiebig M (1992) Flow structure and heat transfer in a channel with multiple longitudinal vortex generators. Exp Thermal Fluid Sci 5:425–436

    Article  Google Scholar 

  • Tiggelbeck S, Mitra NK, Fiebig M (1993) Experimental investigations of heat transfer enhancement and flow losses in a channel with double rows of longitudinal vortex generators. Int J Heat Mass Transf 36:2327–2337

    Article  Google Scholar 

  • Torii K, Kwak KM, Nishino K (2002) Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers. Int J Heat Mass Tranf 45:3795–3801

    Article  Google Scholar 

  • Trupp AC, Lau ACY (1984) Fully developed laminar heat transfer in circular sector ducts with isothermal walls. J Heat Transf 106:467–469

    Article  Google Scholar 

  • Velete CM, Hansen MOL, Okulov VL (2009) Helical structure of longitudinal vortices embedded in turbulent wall-bounded flow. J Fluid Mech 619:167–177

    Article  MATH  Google Scholar 

  • Wang L, Salewski M, Sunden B, Borg A, Abrahamsson H (2012) Endwall convective heat transfer for bluff bodies. Int Commun Heat Mass Transf 39:167–173

    Article  Google Scholar 

  • Yoo SY, Goldstein RJ, Chung MK (1993) Effects of angle of attack on mass transfer from a square cylinder and its base plate. Int J Heat Mass Transf 36:371–381

    Article  Google Scholar 

  • You D, Wang M (2006) Large-eddy simulations of longitudinal vortices embedded in a turbulent boundary layer. AIAA J 44:3032–3039

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, S.K., Ranjan, H., Emani, M.S., Bharti, A.K. (2020). Swirl Generators, Extended Surface Insert and Tangential Injection Devices. In: Insert Devices and Integral Roughness in Heat Transfer Enhancement. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-030-20776-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20776-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20775-5

  • Online ISBN: 978-3-030-20776-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics