Skip to main content

Role of Interventional Radiology in Management of Gastrointestinal Cancers and Neuroendocrine Tumors

  • Chapter
  • First Online:
Textbook of Gastrointestinal Oncology

Abstract

Interventional radiology is currently playing an ever-increasing role in the management of oncology patients. In today’s modern oncology practice, interventional radiologists are among the core members of tumor boards in addition to surgeons and medical/radiation oncologists. In this chapter, we aim to give a concise and brief insight into the interventional radiology procedures most commonly employed in modern oncology practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosch J, Keller FS, Kaufman JA. The birth, early years, and future of interventional radiology. J Vasc Interv Radiol. 2003;14(7):841–53.

    Article  PubMed  Google Scholar 

  2. Charboneau JW, Reading CC, Welch TJ. CT and sonographically guided needle biopsy: current techniques and new innovations. AJR Am J Roentgenol. 1990;154(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  3. Reading CC, Charboneau JW, James EM, Hurt MR. Sonographically guided percutaneous biopsy of small (3 cm or less) masses. AJR Am J Roentgenol. 1988;151(1):189–92.

    Article  CAS  PubMed  Google Scholar 

  4. Odisio BC, Wallace MJ. Image-guided interventions in oncology. Surg Oncol Clin N Am. 2014;23(4):937–55.

    Article  PubMed  Google Scholar 

  5. Hopper KD, Abendroth CS, Sturtz KW, Matthews YL, Shirk SJ, Stevens LA. Blinded comparison of biopsy needles and automated devices in vitro: 2. Biopsy of medical renal disease. AJR Am J Roentgenol. 1993;161(6):1299–301.

    Article  CAS  PubMed  Google Scholar 

  6. Hopper KD, Abendroth CS, Sturtz KW, Matthews YL, Shirk SJ, Stevens LA. Blinded comparison of biopsy needles and automated devices in vitro: 1. Biopsy of diffuse hepatic disease. AJR Am J Roentgenol. 1993;161(6):1293–7.

    Article  CAS  PubMed  Google Scholar 

  7. Gupta S, Wallace MJ, Cardella JF, Kundu S, Miller DL, Rose SC, et al. Quality improvement guidelines for percutaneous needle biopsy. J Vasc Interv Radiol. 2010;21(7):969–75.

    Article  PubMed  Google Scholar 

  8. Kim KW, Kim MJ, Kim HC, Park SH, Kim SY, Park MS, et al. Value of “patent track” sign on Doppler sonography after percutaneous liver biopsy in detection of postbiopsy bleeding: a prospective study in 352 patients. AJR Am J Roentgenol. 2007;189(1):109–16.

    Article  PubMed  Google Scholar 

  9. Geraghty PR, Kee ST, McFarlane G, Razavi MK, Sze DY, Dake MD. CT-guided transthoracic needle aspiration biopsy of pulmonary nodules: needle size and pneumothorax rate. Radiology. 2003;229(2):475–81.

    Article  PubMed  Google Scholar 

  10. Schubert P, Wright CA, Louw M, Brundyn K, Theron J, Bolliger CT, et al. Ultrasound-assisted transthoracic biopsy: cells or sections? Diagn Cytopathol. 2005;33(4):233–7.

    Article  PubMed  Google Scholar 

  11. Nordback IH, Pitt HA, Coleman J, Venbrux AC, Dooley WC, Yeu NN, et al. Unresectable hilar cholangiocarcinoma: percutaneous versus operative palliation. Surgery. 1994;115(5):597–603.

    CAS  PubMed  Google Scholar 

  12. Ozden I, Tekant Y, Bilge O, Acarli K, Alper A, Emre A, et al. Endoscopic and radiologic interventions as the leading causes of severe cholangitis in a tertiary referral center. Am J Surg. 2005;189(6):702–6.

    Article  PubMed  Google Scholar 

  13. Sutter CM, Ryu RK. Percutaneous management of malignant biliary obstruction. Tech Vasc Interv Radiol. 2015;18(4):218–26.

    Article  PubMed  Google Scholar 

  14. Saad WE, Wallace MJ, Wojak JC, Kundu S, Cardella JF. Quality improvement guidelines for percutaneous transhepatic cholangiography, biliary drainage, and percutaneous cholecystostomy. J Vasc Interv Radiol. 2010;21(6):789–95.

    Article  PubMed  Google Scholar 

  15. Garcia MJ, Epstein DS, Dignazio MA. Percutaneous approach to the diagnosis and treatment of biliary tract malignancies. Surg Oncol Clin N Am. 2009;18(2):241–56, viii.

    Article  PubMed  Google Scholar 

  16. Madoff DC, Wallace MJ. Palliative treatment of unresectable bile duct cancer: which stent? Which approach? Surg Oncol Clin N Am. 2002;11(4):923–39.

    Article  PubMed  Google Scholar 

  17. Lee BH, Choe DH, Lee JH, Kim KH, Chin SY. Metallic stents in malignant biliary obstruction: prospective long-term clinical results. AJR Am J Roentgenol. 1997;168(3):741–5.

    Article  CAS  PubMed  Google Scholar 

  18. Wagner HJ, Knyrim K, Vakil N, Klose KJ. Plastic endoprostheses versus metal stents in the palliative treatment of malignant hilar biliary obstruction. A prospective and randomized trial. Endoscopy. 1993;25(3):213–8.

    Article  CAS  PubMed  Google Scholar 

  19. Farrell TA, Hicks ME. A review of radiologically guided percutaneous nephrostomies in 303 patients. J Vasc Interv Radiol. 1997;8(5):769–74.

    Article  CAS  PubMed  Google Scholar 

  20. Ramchandani P, Cardella JF, Grassi CJ, Roberts AC, Sacks D, Schwartzberg MS, et al. Quality improvement guidelines for percutaneous nephrostomy. J Vasc Interv Radiol. 2003;14(9 Pt 2):S277–81.

    PubMed  Google Scholar 

  21. Klahr S. Pathophysiology of obstructive nephropathy. Kidney Int. 1983;23(2):414–26.

    Article  CAS  PubMed  Google Scholar 

  22. Vaughan ED Jr, Marion D, Poppas DP, Felsen D. Pathophysiology of unilateral ureteral obstruction: studies from Charlottesville to New York. J Urol. 2004;172(6 Pt 2):2563–9.

    Article  CAS  PubMed  Google Scholar 

  23. Dagli M, Ramchandani P. Percutaneous nephrostomy: technical aspects and indications. Semin Interv Radiol. 2011;28(4):424–37.

    Article  Google Scholar 

  24. Zagoria RJ, Dyer RB. Do’s and don’t’s of percutaneous nephrostomy. Acad Radiol. 1999;6(6):370–7.

    Article  CAS  PubMed  Google Scholar 

  25. Ahrar K, Matin S, Wood CG, Wallace MJ, Gupta S, Madoff DC, et al. Percutaneous radiofrequency ablation of renal tumors: technique, complications, and outcomes. J Vasc Interv Radiol. 2005;16(5):679–88.

    Article  PubMed  Google Scholar 

  26. Cho YK, Kim JK, Kim WT, Chung JW. Hepatic resection versus radiofrequency ablation for very early stage hepatocellular carcinoma: a Markov model analysis. Hepatology. 2010;51(4):1284–90.

    Article  PubMed  Google Scholar 

  27. Gillams AR, Lees WR. Five-year survival following radiofrequency ablation of small, solitary, hepatic colorectal metastases. J Vasc Interv Radiol. 2008;19(5):712–7.

    Article  PubMed  Google Scholar 

  28. Gillams AR, Lees WR. Five-year survival in 309 patients with colorectal liver metastases treated with radiofrequency ablation. Eur Radiol. 2009;19(5):1206–13.

    Article  CAS  PubMed  Google Scholar 

  29. Oshowo A, Gillams A, Harrison E, Lees WR, Taylor I. Comparison of resection and radiofrequency ablation for treatment of solitary colorectal liver metastases. Br J Surg. 2003;90(10):1240–3.

    Article  CAS  PubMed  Google Scholar 

  30. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25(Suppl 1):S69–83.

    Article  PubMed  Google Scholar 

  31. Lubner MG, Brace CL, Hinshaw JL, Lee FT Jr. Microwave tumor ablation: mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S192–203.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Saldanha DF, Khiatani VL, Carrillo TC, Yap FY, Bui JT, Knuttinen MG, et al. Current tumor ablation technologies: basic science and device review. Semin Interv Radiol. 2010;27(3):247–54.

    Article  Google Scholar 

  33. Martin RC, Scoggins CR, McMasters KM. Safety and efficacy of microwave ablation of hepatic tumors: a prospective review of a 5-year experience. Ann Surg Oncol. 2010;17(1):171–8.

    Article  PubMed  Google Scholar 

  34. Wright AS, Sampson LA, Warner TF, Mahvi DM, Lee FT Jr. Radiofrequency versus microwave ablation in a hepatic porcine model. Radiology. 2005;236(1):132–9.

    Article  PubMed  Google Scholar 

  35. Georgiades CS, Hong K, Bizzell C, Geschwind JF, Rodriguez R. Safety and efficacy of CT-guided percutaneous cryoablation for renal cell carcinoma. J Vasc Interv Radiol. 2008;19(9):1302–10.

    Article  PubMed  Google Scholar 

  36. Shock SA, Laeseke PF, Sampson LA, Lewis WD, Winter TC 3rd, Fine JP, et al. Hepatic hemorrhage caused by percutaneous tumor ablation: radiofrequency ablation versus cryoablation in a porcine model. Radiology. 2005;236(1):125–31.

    Article  PubMed  Google Scholar 

  37. Coster HG. A quantitative analysis of the voltage-current relationships of fixed charge membranes and the associated property of “punch-through”. Biophys J. 1965;5(5):669–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Davalos RV, Mir IL, Rubinsky B. Tissue ablation with irreversible electroporation. Ann Biomed Eng. 2005;33(2):223–31.

    Article  CAS  PubMed  Google Scholar 

  39. Silk M, Tahour D, Srimathveeravalli G, Solomon SB, Thornton RH. The state of irreversible electroporation in interventional oncology. Semin Interv Radiol. 2014;31(2):111–7.

    Article  Google Scholar 

  40. Charpentier KP, Wolf F, Noble L, Winn B, Resnick M, Dupuy DE. Irreversible electroporation of the liver and liver hilum in swine. HPB (Oxford). 2011;13(3):168–73.

    Article  Google Scholar 

  41. Schoellnast H, Monette S, Ezell PC, Deodhar A, Maybody M, Erinjeri JP, et al. Acute and subacute effects of irreversible electroporation on nerves: experimental study in a pig model. Radiology. 2011;260(2):421–7.

    Article  PubMed  Google Scholar 

  42. Schoellnast H, Monette S, Ezell PC, Maybody M, Erinjeri JP, Stubblefield MD, et al. The delayed effects of irreversible electroporation ablation on nerves. Eur Radiol. 2013;23(2):375–80.

    Article  PubMed  Google Scholar 

  43. Silk MT, Wimmer T, Lee KS, Srimathveeravalli G, Brown KT, Kingham PT, et al. Percutaneous ablation of peribiliary tumors with irreversible electroporation. J Vasc Interv Radiol. 2014;25(1):112–8.

    Article  PubMed  Google Scholar 

  44. Ziemlewicz TJ, Wells SA, Lubner MG, Brace CL, Lee FT Jr, Hinshaw JL. Hepatic tumor ablation. Surg Clin North Am. 2016;96(2):315–39.

    Article  PubMed  Google Scholar 

  45. Patel SR, Hinshaw JL, Lubner MG, Lee FT Jr, Nakada SY, Hedican SP. Hydrodissection using an iodinated contrast medium during percutaneous renal cryoablation. J Endourol. 2012;26(5):463–6.

    Article  PubMed  Google Scholar 

  46. Yu H, Burke CT. Comparison of percutaneous ablation technologies in the treatment of malignant liver tumors. Semin Interv Radiol. 2014;31(2):129–37.

    Article  CAS  Google Scholar 

  47. de Meijer VE, Kalish BT, Puder M, Ijzermans JN. Systematic review and meta-analysis of steatosis as a risk factor in major hepatic resection. Br J Surg. 2010;97(9):1331–9.

    Article  PubMed  Google Scholar 

  48. Ribero D, Abdalla EK, Madoff DC, Donadon M, Loyer EM, Vauthey JN. Portal vein embolization before major hepatectomy and its effects on regeneration, resectability and outcome. Br J Surg. 2007;94(11):1386–94.

    Article  CAS  PubMed  Google Scholar 

  49. Shoup M, Gonen M, D’Angelica M, Jarnagin WR, DeMatteo RP, Schwartz LH, et al. Volumetric analysis predicts hepatic dysfunction in patients undergoing major liver resection. J Gastrointest Surg. 2003;7(3):325–30.

    Article  PubMed  Google Scholar 

  50. Brouquet A, Andreou A, Shindoh J, Vauthey JN. Methods to improve resectability of hepatocellular carcinoma. Recent Results Cancer Res. 2013;190:57–67.

    Article  PubMed  Google Scholar 

  51. Rees M, John TG. Current status of surgery in colorectal metastases to the liver. Hepato-Gastroenterology. 2001;48(38):341–4.

    CAS  PubMed  Google Scholar 

  52. Anaya DA, Blazer DG, Abdalla EK. Strategies for resection using portal vein embolization: hepatocellular carcinoma and hilar cholangiocarcinoma. Semin Interv Radiol. 2008;25(2):110–22.

    Article  Google Scholar 

  53. Vauthey JN, Dixon E, Abdalla EK, Helton WS, Pawlik TM, Taouli B, et al. Pretreatment assessment of hepatocellular carcinoma: expert consensus statement. HPB (Oxford). 2010;12(5):289–99.

    Article  Google Scholar 

  54. Orcutt ST, Kobayashi K, Sultenfuss M, Hailey BS, Sparks A, Satpathy B, et al. Portal vein embolization as an oncosurgical strategy prior to major hepatic resection: anatomic, surgical, and technical considerations. Front Surg. 2016;3:14.

    Article  PubMed  PubMed Central  Google Scholar 

  55. van Lienden KP, van den Esschert JW, de Graaf W, Bipat S, Lameris JS, van Gulik TM, et al. Portal vein embolization before liver resection: a systematic review. Cardiovasc Intervent Radiol. 2013;36(1):25–34.

    Article  PubMed  Google Scholar 

  56. Hong K, Khwaja A, Liapi E, Torbenson MS, Georgiades CS, Geschwind JF. New intra-arterial drug delivery system for the treatment of liver cancer: preclinical assessment in a rabbit model of liver cancer. Clin Cancer Res. 2006;12(8):2563–7.

    Article  CAS  PubMed  Google Scholar 

  57. Chapiro J, Tacher V, Geschwind JF. Intraarterial therapies for primary liver cancer: state of the art. Expert Rev Anticancer Ther. 2013;13(10):1157–67.

    Article  CAS  PubMed  Google Scholar 

  58. Constantin M, Fundueanu G, Bortolotti F, Cortesi R, Ascenzi P, Menegatti E. Preparation and characterisation of poly(vinyl alcohol)/cyclodextrin microspheres as matrix for inclusion and separation of drugs. Int J Pharm. 2004;285(1–2):87–96.

    Article  CAS  PubMed  Google Scholar 

  59. Qian J, Truebenbach J, Graepler F, Pereira P, Huppert P, Eul T, et al. Application of poly-lactide-co-glycolide-microspheres in the transarterial chemoembolization in an animal model of hepatocellular carcinoma. World J Gastroenterol. 2003;9(1):94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lewis AL, Gonzalez MV, Lloyd AW, Hall B, Tang Y, Willis SL, et al. DC bead: in vitro characterization of a drug-delivery device for transarterial chemoembolization. J Vasc Interv Radiol. 2006;17(2 Pt 1):335–42.

    Article  PubMed  Google Scholar 

  61. Gonzalez MV, Tang Y, Phillips GJ, Lloyd AW, Hall B, Stratford PW, et al. Doxorubicin eluting beads-2: methods for evaluating drug elution and in-vitro: in-vivo correlation. J Mater Sci Mater Med. 2008;19(2):767–75.

    Article  CAS  PubMed  Google Scholar 

  62. Ahmadzadehfar H, Sabet A, Biermann K, Muckle M, Brockmann H, Kuhl C, et al. The significance of 99mTc-MAA SPECT/CT liver perfusion imaging in treatment planning for 90Y-microsphere selective internal radiation treatment. J Nucl Med. 2010;51(8):1206–12.

    Article  PubMed  Google Scholar 

  63. Lewandowski RJ, Geschwind JF, Liapi E, Salem R. Transcatheter intraarterial therapies: rationale and overview. Radiology. 2011;259(3):641–57.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pellerin O, Geschwind JF. Intra-arterial treatment of liver metastases from colorectal carcinoma. J Radiol. 2011;92(9):835–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Minocha J, Salem R, Lewandowski RJ. Transarterial chemoembolization and yittrium-90 for liver cancer and other lesions. Clin Liver Dis. 2014;18(4):877–90.

    Article  PubMed  Google Scholar 

  66. Bhutiani N, Martin RC 2nd. Transarterial therapy for colorectal liver metastases. Surg Clin North Am. 2016;96(2):369–91.

    Article  PubMed  Google Scholar 

  67. Gaur SK, Friese JL, Sadow CA, Ayyagari R, Binkert CA, Schenker MP, et al. Hepatic arterial chemoembolization using drug-eluting beads in gastrointestinal neuroendocrine tumor metastatic to the liver. Cardiovasc Intervent Radiol. 2011;34(3):566–72.

    Article  PubMed  Google Scholar 

  68. Liapi E, Geschwind JF, Vossen JA, Buijs M, Georgiades CS, Bluemke DA, et al. Functional MRI evaluation of tumor response in patients with neuroendocrine hepatic metastasis treated with transcatheter arterial chemoembolization. AJR Am J Roentgenol. 2008;190(1):67–73.

    Article  PubMed  Google Scholar 

  69. Memon K, Lewandowski RJ, Mulcahy MF, Riaz A, Ryu RK, Sato KT, et al. Radioembolization for neuroendocrine liver metastases: safety, imaging, and long-term outcomes. Int J Radiat Oncol Biol Phys. 2012;83(3):887–94.

    Article  PubMed  Google Scholar 

  70. Rhee TK, Lewandowski RJ, Liu DM, Mulcahy MF, Takahashi G, Hansen PD, et al. 90Y radioembolization for metastatic neuroendocrine liver tumors: preliminary results from a multi-institutional experience. Ann Surg. 2008;247(6):1029–35.

    Article  PubMed  Google Scholar 

  71. Roche A, Girish BV, de Baere T, Baudin E, Boige V, Elias D, et al. Trans-catheter arterial chemoembolization as first-line treatment for hepatic metastases from endocrine tumors. Eur Radiol. 2003;13(1):136–40.

    PubMed  Google Scholar 

  72. Cartier V, Aube C. Diagnosis of hepatocellular carcinoma. Diagn Interv Imaging. 2014;95(7–8):709–19.

    Article  CAS  PubMed  Google Scholar 

  73. Doyon DMA, Jourde AN, Regensberg C, Frileux C. L’embolisation artérielle hépatique dans les tumeurs malignesdu liver. Ann Radiol. 1974;17:593–603.

    CAS  PubMed  Google Scholar 

  74. Marelli L, Stigliano R, Triantos C, Senzolo M, Cholongitas E, Davies N, et al. Transarterial therapy for hepatocellular carcinoma: which technique is more effective? A systematic review of cohort and randomized studies. Cardiovasc Intervent Radiol. [Meta-Analysis Review]. 2007;30(1):6–25.

    Article  Google Scholar 

  75. Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, et al. Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. 2008;100(10):698–711.

    Google Scholar 

  76. Bruix J, Sherman M. Management of hepatocellular carcinoma: an update. Hepatology. [Practice Guideline]. 2011;53(3):1020–2.

    Article  Google Scholar 

  77. Anonymous. EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol. [Practice Guideline]. 2012;56(4):908–43.

    Article  Google Scholar 

  78. Boulin M, Delhom E, Pierredon-Foulongne MA, Cercueil JP, Guiu B. Transarterial chemoembolization for hepatocellular carcinoma: an old method, now flavor of the day. Diagn Interv Imaging. 2015;96(6):607–15.

    Article  CAS  PubMed  Google Scholar 

  79. Raoul JL, Sangro B, Forner A, Mazzaferro V, Piscaglia F, Bolondi L, et al. Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev. [Research Support, Non-U.S. Gov’t Review]. 2011;37(3):212–20.

    Article  Google Scholar 

  80. Lencioni R. Management of hepatocellular carcinoma with transarterial chemoembolization in the era of systemic targeted therapy. Crit Rev Oncol Hematol. [Review]. 2012;83(2):216–24.

    Article  Google Scholar 

  81. Cao DD, Xu HL, Liu L, Zheng YF, Gao SF, Xu XM, et al. Thalidomide combined with transcatheter arterial chemoembolization for primary hepatocellular carcinoma: a systematic review and meta-analysis. Oncotarget. [Meta-Analysis Review]. 2017;8(27):44976–93.

    Google Scholar 

  82. Lencioni R, Petruzzi P, Crocetti L. Chemoembolization of hepatocellular carcinoma. Semin Interv Radiol. [Review]. 2013;30(1):3–11.

    Article  Google Scholar 

  83. Lammer J, Malagari K, Vogl T, Pilleul F, Denys A, Watkinson A, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Interv Radiol. [Clinical Trial, Phase II Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. 2010;33(1):41–52.

    Google Scholar 

  84. Sun Z, Li G, Ai X, Luo B, Wen Y, Zhao Z, et al. Hepatic and biliary damage after transarterial chemoembolization for malignant hepatic tumors: incidence, diagnosis, treatment, outcome and mechanism. Crit Rev Oncol Hematol. [Research Support, Non-U.S. Gov’t Review]. 2011;79(2):164–74.

    Article  Google Scholar 

  85. Forner A, Ayuso C, Varela M, Rimola J, Hessheimer AJ, de Lope CR, et al. Evaluation of tumor response after locoregional therapies in hepatocellular carcinoma: are response evaluation criteria in solid tumors reliable? Cancer. [Comparative Study Evaluation Studies Research Support, Non-U.S. Gov’t]. 2009;115(3):616–23.

    Google Scholar 

  86. Gillmore R, Stuart S, Kirkwood A, Hameeduddin A, Woodward N, Burroughs AK, et al. EASL and mRECIST responses are independent prognostic factors for survival in hepatocellular cancer patients treated with transarterial embolization. J Hepatol. [Research Support, Non-U.S. Gov’t]. 2011;55(6):1309–16.

    Google Scholar 

  87. Shim JH, Lee HC, Kim SO, Shin YM, Kim KM, Lim YS, et al. Which response criteria best help predict survival of patients with hepatocellular carcinoma following chemoembolization? A validation study of old and new models. Radiology. [Comparative Study Validation Studies]. 2012;262(2):708–18.

    Google Scholar 

  88. Bolondi L, Burroughs A, Dufour JF, Galle PR, Mazzaferro V, Piscaglia F, et al. Heterogeneity of patients with intermediate (BCLC B) hepatocellular carcinoma: proposal for a subclassification to facilitate treatment decisions. Semin Liver Dis. [Research Support, Non-U.S. Gov’t Review]. 2012;32(4):348–59.

    CAS  Google Scholar 

  89. Lammer J, Malagari K, Vogl T, Pilleul F, Denys A, Watkinson A, et al. Prospective randomized study of doxorubicin-eluting-bead embolization in the treatment of hepatocellular carcinoma: results of the PRECISION V study. Cardiovasc Intervent Radiol. 2010;33(1):41–52.

    Article  PubMed  Google Scholar 

  90. Vogl TJ, Lammer J, Lencioni R, Malagari K, Watkinson A, Pilleul F, et al. Liver, gastrointestinal, and cardiac toxicity in intermediate hepatocellular carcinoma treated with PRECISION TACE with drug-eluting beads: results from the PRECISION V randomized trial. AJR Am J Roentgenol. [Multicenter Study Randomized Controlled Trial]. 2011;197(4):W562–70.

    Article  Google Scholar 

  91. Deschamps F, Solomon SB, Thornton RH, Rao P, Hakime A, Kuoch V, et al. Computed analysis of three-dimensional cone-beam computed tomography angiography for determination of tumor-feeding vessels during chemoembolization of liver tumor: a pilot study. Cardiovasc Intervent Radiol. 2010;33(6):1235–42.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Nicolini A, Martinetti L, Crespi S, Maggioni M, Sangiovanni A. Transarterial chemoembolization with epirubicin-eluting beads versus transarterial embolization before liver transplantation for hepatocellular carcinoma. J Vasc Interv Radiol: JVIR. [Comparative Study]. 2010;21(3):327–32.

    Article  Google Scholar 

  93. Geschwind JF, Kudo M, Marrero JA, Venook AP, Chen XP, Bronowicki JP, et al. TACE treatment in patients with sorafenib-treated unresectable hepatocellular carcinoma in clinical practice: final analysis of GIDEON. Radiology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. 2016;279(2):630–40.

    Google Scholar 

  94. Lewis AL, Taylor RR, Hall B, Gonzalez MV, Willis SL, Stratford PW. Pharmacokinetic and safety study of doxorubicin-eluting beads in a porcine model of hepatic arterial embolization. J Vasc Interv Radiol: JVIR: JVIR. 2006;17(8):1335–43.

    Article  PubMed  Google Scholar 

  95. Poon RT, Tso WK, Pang RW, Ng KK, Woo R, Tai KS, et al. A phase I/II trial of chemoembolization for hepatocellular carcinoma using a novel intra-arterial drug-eluting bead. Clin Gastroenterol Hepatol. [Clinical Trial, Phase I Clinical Trial, Phase II Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. 2007;5(9):1100–8.

    CAS  Google Scholar 

  96. Nishikawa H, Kita R, Kimura T, Osaki Y. Transcatheter arterial embolic therapies for hepatocellular carcinoma: a literature review. Anticancer Res. [Review]. 2014;34(12):6877–86.

    CAS  Google Scholar 

  97. Spreafico C, Cascella T, Facciorusso A, Sposito C, Rodolfo L, Morosi C, et al. Transarterial chemoembolization for hepatocellular carcinoma with a new generation of beads: clinical-radiological outcomes and safety profile. Cardiovasc Intervent Radiol. 2015;38(1):129–34.

    Article  PubMed  Google Scholar 

  98. Dinca HPJ, Baylatry MT, Ghegediban SH, Pascale F, Manfait M, editors. Why do small size doxorubicin-eluting microspheres induce more tissue necrosis than larger ones? A comparative study in healthy pig liver (oral communication 2206-2). CIRSE annual meeting; 2012; Lisbon.

    Google Scholar 

  99. Malagari K, Pomoni M, Moschouris H, Kelekis A, Charokopakis A, Bouma E, et al. Chemoembolization of hepatocellular carcinoma with hepasphere 30–60 μm. Safety and efficacy study. Cardiovasc Intervent Radiol. 2014;37(1):165–75.

    Article  PubMed  Google Scholar 

  100. Leung DA, Goin JE, Sickles C, Raskay BJ, Soulen MC. Determinants of postembolization syndrome after hepatic chemoembolization. J Vasc Interv Radiol. 2001;12(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  101. Geschwind JF, Salem R, Carr BI, Soulen MC, Thurston KG, Goin KA, et al. Yttrium-90 microspheres for the treatment of hepatocellular carcinoma. Gastroenterology. 2004;127(5 Suppl 1):S194–205.

    Article  CAS  PubMed  Google Scholar 

  102. Ingold JA, Reed GB, Kaplan HS, Bagshaw MA. Radiation hepatitis. Am J Roentgenol Radium Therapy, Nucl Med. 1965;93:200–8.

    CAS  Google Scholar 

  103. Lawrence TS, Robertson JM, Anscher MS, Jirtle RL, Ensminger WD, Fajardo LF. Hepatic toxicity resulting from cancer treatment. Int J Radiat Oncol Biol Phys. 1995;31(5):1237–48.

    Article  CAS  PubMed  Google Scholar 

  104. Salem R, Thurston KG. Radioembolization with 90Yttrium microspheres: a state-of-the-art brachytherapy treatment for primary and secondary liver malignancies. Part 1: technical and methodologic considerations. J Vasc Interv Radiol. 2006;17(8):1251–78.

    Article  PubMed  Google Scholar 

  105. Virdee PS, Moschandreas J, Gebski V, Love SB, Francis EA, Wasan HS, et al. Protocol for combined analysis of FOXFIRE, SIRFLOX, and FOXFIRE-global randomized phase III trials of chemotherapy +/− selective internal radiation therapy as first-line treatment for patients with metastatic colorectal cancer. JMIR Res Protoc. 2017;6(3):e43.

    Article  PubMed  PubMed Central  Google Scholar 

  106. van Hazel GA, Heinemann V, Sharma NK, Findlay MP, Ricke J, Peeters M, et al. SIRFLOX: randomized phase III trial comparing first-line mFOLFOX6 (plus or minus bevacizumab) versus mFOLFOX6 (plus or minus bevacizumab) plus selective internal radiation therapy in patients with metastatic colorectal cancer. J Clin Oncol. [Clinical Trial, Phase III Comparative Study Randomized Controlled Trial]. 2016;34(15):1723–31.

    Google Scholar 

  107. Riaz A, Awais R, Salem R. Side effects of yttrium-90 radioembolization. Front Oncol. 2014;4:198.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Piedbois P, Buyse M, Kemeny N, Rougier P, Carlson R, Allen-Mersh T, et al. Reappraisal of hepatic arterial infusion in the treatment of nonresectable liver metastases from colorectal cancer. J Natl Cancer Inst. [Meta-Analysis Research Support, Non-U.S. Gov’t]. 1996;88(5):252–8.

    CAS  Google Scholar 

  109. Kemeny NE, Niedzwiecki D, Hollis DR, Lenz HJ, Warren RS, Naughton MJ, et al. Hepatic arterial infusion versus systemic therapy for hepatic metastases from colorectal cancer: a randomized trial of efficacy, quality of life, and molecular markers (CALGB 9481). J Clin Oncol. [Multicenter Study Randomized Controlled Trial Research Support, N.I.H., Extramural]. 2006;24(9):1395–403.

    CAS  Google Scholar 

  110. Allen-Mersh TG, Earlam S, Fordy C, Abrams K, Houghton J. Quality of life and survival with continuous hepatic-artery floxuridine infusion for colorectal liver metastases. Lancet. [Clinical Trial Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov’t]. 1994;344(8932):1255–60.

    CAS  Google Scholar 

  111. Kennedy A. Radioembolization of hepatic tumors. J Gastrointest Oncol. [Review]. 2014;5(3):178–89.

    Google Scholar 

  112. Committee AT, Varadarajulu S, Banerjee S, Barth B, Desilets D, Kaul V, et al. Enteral stents. Gastrointest Endosc. 2011;74(3):455–64.

    Article  Google Scholar 

  113. Dai YX, Li CY, Xie Y, Liu XD, Zhang JX, Zhou J, et al. Interventions for dysphagia in oesophageal cancer. Cochrane Database Syst Rev. 2014;(10).

    Google Scholar 

  114. Katsanos K, Sabharwal T, Adam A. Stenting of the lower gastrointestinal tract: current status. Cardiovasc Intervent Radiol. 2011;34(3):462–73.

    Article  PubMed  Google Scholar 

  115. Bergquist H, Johnsson E, Nyman J, Rylander H, Hammerlid E, Friesland S, et al. Combined stent insertion and single high-dose brachytherapy in patients with advanced esophageal cancer--results of a prospective safety study. Dis Esophagus. 2012;25(5):410–5.

    Article  CAS  PubMed  Google Scholar 

  116. Vakil N, Morris AI, Marcon N, Segalin A, Peracchia A, Bethge N, et al. A prospective, randomized, controlled trial of covered expandable metal stents in the palliation of malignant esophageal obstruction at the gastroesophageal junction. Am J Gastroenterol. 2001;96(6):1791–6.

    Article  CAS  PubMed  Google Scholar 

  117. Malgras B, Lo Dico R, Pautrat K, Dohan A, Boudiaf M, Pocard M, et al. Gastrointestinal stenting: current status and imaging features. Diagn Interv Imaging. 2015;96(6):593–606.

    Article  CAS  PubMed  Google Scholar 

  118. Shin JH, Song HY, Kim JH, Kim SB, Lee GH, Park SI, et al. Comparison of temporary and permanent stent placement with concurrent radiation therapy in patients with esophageal carcinoma. J Vasc Interv Radiol. 2005;16(1):67–74.

    Article  PubMed  Google Scholar 

  119. Song HY, Lee DH, Seo TS, Kim SB, Jung HY, Kim JH, et al. Retrievable covered nitinol stents: experiences in 108 patients with malignant esophageal strictures. J Vasc Interv Radiol. 2002;13(3):285–93.

    Article  PubMed  Google Scholar 

  120. Stivaros SM, Williams LR, Senger C, Wilbraham L, Laasch HU. Woven polydioxanone biodegradable stents: a new treatment option for benign and malignant oesophageal strictures. Eur Radiol. 2010;20(5):1069–72.

    Article  CAS  PubMed  Google Scholar 

  121. Shim CS, Jung IS, Bhandari S, Ryu CB, Hong SJ, Kim JO, et al. Management of malignant strictures of the cervical esophagus with a newly-designed self-expanding metal stent. Endoscopy. 2004;36(6):554–7.

    Article  CAS  PubMed  Google Scholar 

  122. Siersema PD. Esophageal cancer. Gastroenterol Clin N Am. 2008;37(4):943–64, x.

    Article  Google Scholar 

  123. Libby ED, Fawaz R, Leano AM, Hassoun PM. Airway complication of expandable stents. Gastrointest Endosc. 1999;49(1):136–7.

    Article  CAS  PubMed  Google Scholar 

  124. Dormann A, Meisner S, Verin N, Lang AW. Self-expanding metal stents for gastroduodenal malignancies: systematic review of their clinical effectiveness. Endoscopy. 2004;36(6):543–50.

    Article  CAS  PubMed  Google Scholar 

  125. Fiori E, Lamazza A, De Cesare A, Bononi M, Volpino P, Schillaci A, et al. Palliative management of malignant rectosigmoidal obstruction. Colostomy vs. endoscopic stenting. A randomized prospective trial. Anticancer Res. 2004;24(1):265–8.

    PubMed  Google Scholar 

  126. Jeurnink SM, Steyerberg EW, van Hooft JE, van Eijck CH, Schwartz MP, Vleggaar FP, et al. Surgical gastrojejunostomy or endoscopic stent placement for the palliation of malignant gastric outlet obstruction (SUSTENT study): a multicenter randomized trial. Gastrointest Endosc. 2010;71(3):490–9.

    Article  PubMed  Google Scholar 

  127. Mehta S, Hindmarsh A, Cheong E, Cockburn J, Saada J, Tighe R, et al. Prospective randomized trial of laparoscopic gastrojejunostomy versus duodenal stenting for malignant gastric outflow obstruction. Surg Endosc. 2006;20(2):239–42.

    Article  CAS  PubMed  Google Scholar 

  128. Del Piano M, Ballare M, Montino F, Todesco A, Orsello M, Magnani C, et al. Endoscopy or surgery for malignant GI outlet obstruction? Gastrointest Endosc. 2005;61(3):421–6.

    Article  PubMed  Google Scholar 

  129. van Hooft JE, Uitdehaag MJ, Bruno MJ, Timmer R, Siersema PD, Dijkgraaf MG, et al. Efficacy and safety of the new wallflex enteral stent in palliative treatment of malignant gastric outlet obstruction (DUOFLEX study): a prospective multicenter study. Gastrointest Endosc. 2009;69(6):1059–66.

    Article  PubMed  Google Scholar 

  130. Masci E, Viale E, Mangiavillano B, Contin G, Lomazzi A, Buffoli F, et al. Enteral self-expandable metal stent for malignant luminal obstruction of the upper and lower gastrointestinal tract: a prospective multicentric study. J Clin Gastroenterol. 2008;42(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  131. Nassif T, Prat F, Meduri B, Fritsch J, Choury AD, Dumont JL, et al. Endoscopic palliation of malignant gastric outlet obstruction using self-expandable metallic stents: results of a multicenter study. Endoscopy. 2003;35(6):483–9.

    Article  CAS  PubMed  Google Scholar 

  132. Pearce NW, Scott SD, Karran SJ. Timing and method of reversal of Hartmann’s procedure. Br J Surg. 1992;79(8):839–41.

    Article  CAS  PubMed  Google Scholar 

  133. Tan CJ, Dasari BV, Gardiner K. Systematic review and meta-analysis of randomized clinical trials of self-expanding metallic stents as a bridge to surgery versus emergency surgery for malignant left-sided large bowel obstruction. Br J Surg. 2012;99(4):469–76.

    Article  CAS  PubMed  Google Scholar 

  134. Tejero E, Mainar A, Fernandez L, Tobio R, De Gregorio MA. New procedure for the treatment of colorectal neoplastic obstructions. Dis Colon Rectum. 1994;37(11):1158–9.

    Article  CAS  PubMed  Google Scholar 

  135. Aitken DG, Horgan AF. Endoluminal insertion of colonic stents. Surg Oncol. 2007;16(1):59–63.

    Article  PubMed  Google Scholar 

  136. Tilney HS, Lovegrove RE, Purkayastha S, Sains PS, Weston-Petrides GK, Darzi AW, et al. Comparison of colonic stenting and open surgery for malignant large bowel obstruction. Surg Endosc. 2007;21(2):225–33.

    Article  CAS  PubMed  Google Scholar 

  137. Watt AM, Faragher IG, Griffin TT, Rieger NA, Maddern GJ. Self-expanding metallic stents for relieving malignant colorectal obstruction: a systematic review. Ann Surg. 2007;246(1):24–30.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Vanderwee K, Clays E, Bocquaert I, Gobert M, Folens B, Defloor T. Malnutrition and associated factors in elderly hospital patients: a Belgian cross-sectional, multi-centre study. Clin Nutr. 2010;29(4):469–76.

    Article  PubMed  Google Scholar 

  139. McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009;33(3):277–316.

    Article  PubMed  Google Scholar 

  140. Preshaw RM. A percutaneous method for inserting a feeding gastrostomy tube. Surg Gynecol Obstet. 1981;152(5):658–60.

    CAS  PubMed  Google Scholar 

  141. Sutcliffe J, Wigham A, McEniff N, Dvorak P, Crocetti L, Uberoi R. CIRSE standards of practice guidelines on gastrostomy. Cardiovasc Intervent Radiol. 2016;39(7):973–87.

    Article  PubMed  Google Scholar 

  142. de Baere T, Chapot R, Kuoch V, Chevallier P, Delille JP, Domenge C, et al. Percutaneous gastrostomy with fluoroscopic guidance: single-center experience in 500 consecutive cancer patients. Radiology. 1999;210(3):651–4.

    Article  PubMed  Google Scholar 

  143. Ryan JM, Hahn PF, Boland GW, McDowell RK, Saini S, Mueller PR. Percutaneous gastrostomy with T-fastener gastropexy: results of 316 consecutive procedures. Radiology. 1997;203(2):496–500.

    Article  CAS  PubMed  Google Scholar 

  144. Shin JH, Park AW. Updates on percutaneous radiologic gastrostomy/gastrojejunostomy and jejunostomy. Gut Liver. 2010;4(Suppl 1):S25–31.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Laasch HU, Wilbraham L, Bullen K, Marriott A, Lawrance JA, Johnson RJ, et al. Gastrostomy insertion: comparing the options--PEG, RIG or PIG? Clin Radiol. 2003;58(5):398–405.

    Article  PubMed  Google Scholar 

  146. Wollman B, D’Agostino HB, Walus-Wigle JR, Easter DW, Beale A. Radiologic, endoscopic, and surgical gastrostomy: An institutional evaluation and meta-analysis of the literature. Radiology. 1995;197(3):699–704.

    Article  CAS  PubMed  Google Scholar 

  147. Kambadakone A, Thabet A, Gervais DA, Mueller PR, Arellano RS. CT-guided celiac plexus neurolysis: a review of anatomy, indications, technique, and tips for successful treatment. Radiographics. 2011;31(6):1599–621.

    Article  PubMed  Google Scholar 

  148. Mercadante S, Nicosia F. Celiac plexus block: a reappraisal. Reg Anesth Pain Med. 1998;23(1):37–48.

    CAS  PubMed  Google Scholar 

  149. Akhan O, Altinok D, Ozmen MN, Oguzkurt L, Besim A. Correlation between the grade of tumoral invasion and pain relief in patients with celiac ganglia block. AJR Am J Roentgenol. 1997;168(6):1565–7.

    Article  CAS  PubMed  Google Scholar 

  150. Eisenberg E, Carr DB, Chalmers TC. Neurolytic celiac plexus block for treatment of cancer pain: a meta-analysis. Anesth Analg. 1995;80(2):290–5.

    CAS  PubMed  Google Scholar 

  151. Wang PJ, Shang MY, Qian Z, Shao CW, Wang JH, Zhao XH. CT-guided percutaneous neurolytic celiac plexus block technique. Abdom Imaging. 2006;31(6):710–8.

    Article  CAS  PubMed  Google Scholar 

  152. Akhan O, Ozmen MN, Basgun N, Akinci D, Oguz O, Koroglu M, et al. Long-term results of celiac ganglia block: correlation of grade of tumoral invasion and pain relief. AJR Am J Roentgenol. 2004;182(4):891–6.

    Article  PubMed  Google Scholar 

  153. Ischia S, Ischia A, Polati E, Finco G. Three posterior percutaneous celiac plexus block techniques. a prospective, randomized study in 61 patients with pancreatic cancer pain. Anesthesiology. 1992;76(4):534–40.

    Article  CAS  PubMed  Google Scholar 

  154. Ischia S, Polati E, Finco G, Gottin L, Benedini B. 1998 Labat Lecture: the role of the neurolytic celiac plexus block in pancreatic cancer pain management: do we have the answers? Reg Anesth Pain Med. 1998;23(6):611–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okan Akhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karaosmanoglu, A.D., Onur, M.R., Akhan, O. (2019). Role of Interventional Radiology in Management of Gastrointestinal Cancers and Neuroendocrine Tumors. In: Yalcin, S., Philip, P. (eds) Textbook of Gastrointestinal Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-18890-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18890-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18888-7

  • Online ISBN: 978-3-030-18890-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics