Skip to main content

Advances in Radiation Therapy for Gastrointestinal Cancers

  • Chapter
  • First Online:
Textbook of Gastrointestinal Oncology

Abstract

Radiation therapy has been a mainstay in the treatment of gastrointestinal malignancies for decades, whether utilized as the definitive local therapy, adjuvant treatment following surgery, or, more recently, in the neoadjuvant setting to improve surgical outcomes and survival. Traditional radiation therapy has evolved to allow for both more conformal delivery of radiation (e.g., intensity-modulated radiation therapy) and higher radiation dose to the target (e.g., stereotactic body radiation therapy). Consequently, higher rates of local control are coupled with reduced dose to normal structures, leading to a reduction in both acute and chronic side effects. While the proximity of key normal tissues in the abdomen, particularly the bowel, has provided a challenge to a meaningful dose delivery, these recent advances have allowed radiation to serve as the main local therapy modality in non-operable tumors. Further, by coupling these advanced radiation techniques with modern surgery and targeted chemotherapy agents, key oncologic survival outcomes have been realized. This chapter will cover advancements in radiation therapy as pertaining to multiple gastrointestinal malignancies, including a discussion of forthcoming research in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    Article  CAS  PubMed  Google Scholar 

  2. Kumar R, Wild AT, Ziegler MA, Hooker TK, Dah SD, Tran PT, et al. Stereotactic body radiation therapy planning with duodenal sparing using volumetric-modulated arc therapy vs intensity-modulated radiation therapy in locally advanced pancreatic cancer: a dosimetric analysis. Med Dosim. 2013;38(3):243–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nabavizadeh N, Simeonova AO, Waller JG, Romer JL, Monaco DL, Elliott DA, et al. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy. Med Dosim. 2014;39(3):256–60.

    Article  PubMed  Google Scholar 

  4. Li Z, Zeng J, Wang Z, Zhu H, Wei Y. Dosimetric comparison of intensity modulated and volumetric arc radiation therapy for gastric cancer. Oncol Lett. 2014;8(4):1427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhao J, Hu W, Cai G, Wang J, Xie J, Peng J, et al. Dosimetric comparisons of VMAT, IMRT and 3DCRT for locally advanced rectal cancer with simultaneous integrated boost. Oncotarget. 2016;7(5):6345–51.

    PubMed  Google Scholar 

  6. Nagata Y, Hiraoka M, Shibata T, Onishi H, Kokubo M, Karasawa K, et al. Prospective trial of stereotactic body radiation therapy for both operable and inoperable T1N0M0 non-small cell lung cancer: Japan clinical oncology group study JCOG0403. Int J Radiat Oncol Biol Phys. 2015;93(5):989–96.

    Article  PubMed  Google Scholar 

  7. Kuperman VY. Effect of radiation protraction on BED in the case of large fraction dose. Med Phys. 2013;40(8):081716.

    Article  CAS  PubMed  Google Scholar 

  8. Lievens Y, Pijls-Johannesma M. Health economic controversy and cost-effectiveness of proton therapy. Semin Radiat Oncol. 2013;23(2):134–41.

    Article  PubMed  Google Scholar 

  9. Sands SA. Proton beam radiation therapy: the future may prove brighter for pediatric patients with brain tumors. J Clin Oncol. 2016;34(10):1024–6.

    Article  CAS  PubMed  Google Scholar 

  10. Cai S, Hong TS, Goldberg SI, Fernandez-del Castillo C, Thayer SP, Ferrone CR, et al. Updated long-term outcomes and prognostic factors for patients with unresectable locally advanced pancreatic cancer treated with intraoperative radiotherapy at the Massachusetts General Hospital, 1978 to 2010. Cancer. 2013;119(23):4196–204.

    Article  PubMed  Google Scholar 

  11. Hyngstrom JR, Tzeng CW, Beddar S, Das P, Krishnan S, Delclos ME, et al. Intraoperative radiation therapy for locally advanced primary and recurrent colorectal cancer: ten-year institutional experience. J Surg Oncol. 2014;109(7):652–8.

    Article  PubMed  Google Scholar 

  12. Roeder F, Ulrich A, Habl G, Uhl M, Saleh-Ebrahimi L, Huber PE, et al. Clinical phase I/II trial to investigate preoperative dose-escalated intensity-modulated radiation therapy (IMRT) and intraoperative radiation therapy (IORT) in patients with retroperitoneal soft tissue sarcoma: interim analysis. BMC Cancer. 2014;14:617.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vermaas M, Nuyttens JJ, Ferenschild FT, Verhoef C, Eggermont AM, de Wilt JH. Reirradiation, surgery and IORT for recurrent rectal cancer in previously irradiated patients. Radiother Oncol. 2008;87(3):357–60.

    Article  PubMed  Google Scholar 

  14. Moningi S, Armour EP, Terezakis SA, Efron JE, Gearhart SL, Bivalacqua TJ, et al. High-dose-rate intraoperative radiation therapy: the nuts and bolts of starting a program. J Contemp Brachytherapy. 2014;6(1):99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herskovic A, Martz K, al-Sarraf M, Leichman L, Brindle J, Vaitkevicius V, et al. Combined chemotherapy and radiotherapy compared with radiotherapy alone in patients with cancer of the esophagus. N Engl J Med. 1992;326(24):1593–8.

    Article  CAS  PubMed  Google Scholar 

  16. Minsky BD, Pajak TF, Ginsberg RJ, Pisansky TM, Martenson J, Komaki R, et al. INT 0123 (radiation therapy oncology group 94-05) phase III trial of combined-modality therapy for esophageal cancer: high-dose versus standard-dose radiation therapy. J Clin Oncol. 2002;20(5):1167–74.

    Article  CAS  PubMed  Google Scholar 

  17. Tepper J, Krasna MJ, Niedzwiecki D, Hollis D, Reed CE, Goldberg R, et al. Phase III trial of trimodality therapy with cisplatin, fluorouracil, radiotherapy, and surgery compared with surgery alone for esophageal cancer: CALGB 9781. J Clin Oncol. 2008;26(7):1086–92.

    Article  CAS  PubMed  Google Scholar 

  18. van Hagen P, Hulshof MC, van Lanschot JJ, Steyerberg EW, van Berge Henegouwen MI, Wijnhoven BP, et al. CROSS Group. Preoperative chemoradiotherapy for esophageal or junctional cancer. N Engl J Med. 2012;366(22):2074–84.

    Article  PubMed  Google Scholar 

  19. Stahl M, Walz MK, Stuschke M, Lehmann N, Meyer HJ, Riera-Knorrenschild J, et al. Phase III comparison of preoperative chemotherapy compared with chemoradiotherapy in patients with locally advanced adenocarcinoma of the esophagogastric junction. J Clin Oncol. 2009;27(6):851–6.

    Article  CAS  PubMed  Google Scholar 

  20. Chandra A, Guerrero TM, Liu HH, Tucker SL, Liao Z, Wang X, et al. Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiother Oncol. 2005;77(3):247–53.

    Article  PubMed  Google Scholar 

  21. Kole TP, Aghayere O, Kwah J, Yorke ED, Goodman KA. Comparison of heart and coronary artery doses associated with intensity-modulated radiotherapy versus three-dimensional conformal radiotherapy for distal esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;83(5):1580–6.

    Article  PubMed  Google Scholar 

  22. Lin SH, Wang L, Myles B, Thall PF, Hofstetter WL, Swisher SG, et al. Propensity score-based comparison of long-term outcomes with 3-dimensional conformal radiotherapy vs intensity-modulated radiotherapy for esophageal cancer. Int J Radiat Oncol Biol Phys. 2012;84(5):1078–85.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Welsh J, Gomez D, Palmer MB, Riley BA, Mayankkumar AV, Komaki R, et al. Intensity-modulated proton therapy further reduces normal tissue exposure during definitive therapy for locally advanced distal esophageal tumors: a dosimetric study. Int J Radiat Oncol Biol Phys. 2011;81(5):1336–42.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Akutsu Y, Yasuda S, Nagata M, Izumi Y, Okazumi S, Shimada H, et al. A phase I/II clinical trial of preoperative short-course carbon-ion radiotherapy for patients with squamous cell carcinoma of the esophagus. J Surg Oncol. 2012;105(8):750–5.

    Article  PubMed  Google Scholar 

  25. Muijs CT, Beukema JC, Pruim J, Mul VE, Groen H, Plukker JT, et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol. 2010;97(2):165–71.

    Article  PubMed  Google Scholar 

  26. Cunningham D, Allum WH, Stenning SP, Thompson JN, Van de Velde CJ, Nicolson M, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer. N Engl J Med. 2006;355(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  27. Macdonald JS, Smalley SR, Benedetti J, Hundahl SA, Estes NC, Stemmermann GN, et al. Chemoradiotherapy after surgery compared with surgery alone for adenocarcinoma of the stomach or gastroesophageal junction. N Engl J Med. 2001;345(10):725–30.

    Article  CAS  PubMed  Google Scholar 

  28. Park SH, Sohn TS, Lee J, Lim DH, Hong ME, Kim KM, et al. Phase III trial to compare adjuvant chemotherapy with capecitabine and cisplatin versus concurrent chemoradiotherapy in gastric cancer: final report of the adjuvant chemoradiotherapy in stomach tumors trial, including survival and subset analyses. J Clin Oncol. 2015;33(28):3130–6.

    Article  CAS  PubMed  Google Scholar 

  29. Dikken JL, van Sandick JW, Maurits Swellengrebel HA, Lind PA, Putter H, Jansen EP, et al. Neo-adjuvant chemotherapy followed by surgery and chemotherapy or by surgery and chemoradiotherapy for patients with resectable gastric cancer (CRITICS). BMC Cancer. 2011;11:329–2407-11-329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Minn AY, Hsu A, La T, Kunz P, Fisher GA, Ford JM, et al. Comparison of intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy as adjuvant therapy for gastric cancer. Cancer. 2010;116(16):3943–52.

    Article  PubMed  Google Scholar 

  31. Trip AK, Nijkamp J, van Tinteren H, Cats A, Boot H, Jansen EP, et al. IMRT limits nephrotoxicity after chemoradiotherapy for gastric cancer. Radiother Oncol. 2014;112(2):289–94.

    Article  PubMed  Google Scholar 

  32. Wang X, Li G, Zhang Y, Bai S, Xu F, Wei Y, et al. Single-arc volumetric-modulated arc therapy (sVMAT) as adjuvant treatment for gastric cancer: Dosimetric comparisons with three-dimensional conformal radiotherapy (3D-CRT) and intensity-modulated radiotherapy (IMRT). Med Dosim. 2013;38(4):395–400.

    Article  PubMed  Google Scholar 

  33. Dionisi F, Avery S, Lukens JN, Ding X, Kralik J, Kirk M, et al. Proton therapy in adjuvant treatment of gastric cancer: planning comparison with advanced x-ray therapy and feasibility report. Acta Oncol. 2014;53(10):1312–20.

    Article  CAS  PubMed  Google Scholar 

  34. Koyama S, Kawanishi N, Fukutomi H, Osuga T, Iijima T, Tsujii H, et al. Advanced carcinoma of the stomach treated with definitive proton therapy. Am J Gastroenterol. 1990;85(4):443–7.

    CAS  PubMed  Google Scholar 

  35. Shibuya S, Takase Y, Aoyagi H, Orii K, Sharma N, Tsujii H, et al. Definitive proton beam radiation therapy for inoperable gastric cancer: a report of two cases. Radiat Med. 1991;9(1):35–40.

    CAS  PubMed  Google Scholar 

  36. Kalser MH, Ellenberg SS. Pancreatic cancer. Adjuvant combined radiation and chemotherapy following curative resection. Arch Surg. 1985;120(8):899–903.

    Article  CAS  PubMed  Google Scholar 

  37. Klinkenbijl JH, Jeekel J, Sahmoud T, van Pel R, Couvreur ML, Veenhof CH, et al. Adjuvant radiotherapy and 5-fluorouracil after curative resection of cancer of the pancreas and periampullary region: phase III trial of the EORTC gastrointestinal tract cancer cooperative group. Ann Surg. 1999;230(6):776–82; discussion 782-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, et al. European Study Group for Pancreatic Cancer. Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA. 2010;304(10):1073–81.

    Article  CAS  PubMed  Google Scholar 

  39. Van Laethem JL, Hammel P, Mornex F, Azria D, Van Tienhoven G, Vergauwe P, et al. Adjuvant gemcitabine alone versus gemcitabine-based chemoradiotherapy after curative resection for pancreatic cancer: a randomized EORTC-40013-22012/FFCD-9203/GERCOR phase II study. J Clin Oncol. 2010;28(29):4450–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Herman JM, Swartz MJ, Hsu CC, Winter J, Pawlik TM, Sugar E, et al. Analysis of fluorouracil-based adjuvant chemotherapy and radiation after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins hospital. J Clin Oncol. 2008;26(21):3503–10.

    Article  PubMed  Google Scholar 

  41. Corsini MM, Miller RC, Haddock MG, Donohue JH, Farnell MB, Nagorney DM, et al. Adjuvant radiotherapy and chemotherapy for pancreatic carcinoma: the Mayo Clinic experience (1975-2005). J Clin Oncol. 2008;26(21):3511–6.

    Article  PubMed  Google Scholar 

  42. Hsu CC, Herman JM, Corsini MM, Winter JM, Callister MD, Haddock MG, et al. Adjuvant chemoradiation for pancreatic adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Ann Surg Oncol. 2010;17(4):981–90.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Goodman KA, Regine WF, Dawson LA, Ben-Josef E, Haustermans K, Bosch WR, et al. Radiation therapy oncology group consensus panel guidelines for the delineation of the clinical target volume in the postoperative treatment of pancreatic head cancer. Int J Radiat Oncol Biol Phys. 2012;83(3):901–8.

    Article  PubMed  PubMed Central  Google Scholar 

  44. no authors listed. Treatment of locally unresectable carcinoma of the pancreas: comparison of combined-modality therapy (chemotherapy plus radiotherapy) to chemotherapy alone. Gastrointestinal Tumor Study Group. J Natl Cancer Inst. 1988;80(10):751–5.

    Article  Google Scholar 

  45. Faris JE, Blaszkowsky LS, McDermott S, Guimaraes AR, Szymonifka J, Huynh MA, et al. FOLFIRINOX in locally advanced pancreatic cancer: the Massachusetts General Hospital Cancer Center experience. Oncologist. 2013;18(5):543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Loehrer PJ Sr, Feng Y, Cardenes H, Wagner L, Brell JM, Cella D, et al. Gemcitabine alone versus gemcitabine plus radiotherapy in patients with locally advanced pancreatic cancer: an eastern cooperative oncology group trial. J Clin Oncol. 2011;29(31):4105–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moertel CG, Frytak S, Hahn RG, O'Connell MJ, Reitemeier RJ, Rubin J, et al. Therapy of locally unresectable pancreatic carcinoma: a randomized comparison of high dose (6000 rads) radiation alone, moderate dose radiation (4000 rads + 5-fluorouracil), and high dose radiation + 5-fluorouracil: the Gastrointestinal Tumor Study Group. Cancer. 1981;48(8):1705–10.

    Article  CAS  PubMed  Google Scholar 

  48. Hammel P, Huguet F, van Laethem JL, Goldstein D, Glimelius B, Artru P, et al. LAP07 Trial Group. Effect of chemoradiotherapy vs chemotherapy on survival in patients with locally advanced pancreatic cancer controlled after 4 months of gemcitabine with or without erlotinib: the LAP07 randomized clinical trial. JAMA. 2016;315(17):1844–53.

    Article  CAS  PubMed  Google Scholar 

  49. Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7(4):e1000267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yovino S, Poppe M, Jabbour S, David V, Garofalo M, Pandya N, et al. Intensity-modulated radiation therapy significantly improves acute gastrointestinal toxicity in pancreatic and ampullary cancers. Int J Radiat Oncol Biol Phys. 2011;79(1):158–62.

    Article  PubMed  Google Scholar 

  51. Regine WF, Winter KA, Abrams R, Safran H, Hoffman JP, Konski A, et al. Fluorouracil-based chemoradiation with either gemcitabine or fluorouracil chemotherapy after resection of pancreatic adenocarcinoma: 5-year analysis of the U.S. intergroup/RTOG 9704 phase III trial. Ann Surg Oncol. 2011;18(5):1319–26.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ben-Josef E, Schipper M, Francis IR, Hadley S, Ten-Haken R, Lawrence T, et al. A phase I/II trial of intensity modulated radiation (IMRT) dose escalation with concurrent fixed-dose rate gemcitabine (FDR-G) in patients with unresectable pancreatic cancer. Int J Radiat Oncol Biol Phys. 2012;84(5):1166–71.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Prasad S, Cambridge L, Huguet F, Chou JF, Zhang Z, Wu AJ, et al. Intensity modulated radiation therapy reduces gastrointestinal toxicity in locally advanced pancreas cancer. Pract Radiat Oncol. 2016;6(2):78–85.

    Article  PubMed  Google Scholar 

  54. Lee KJ, Yoon HI, Chung MJ, Park JY, Bang S, Park SW, et al. A comparison of gastrointestinal toxicities between intensity-modulated radiotherapy and three-dimensional conformal radiotherapy for pancreatic cancer. Gut Liver. 2016;10(2):303–9.

    Article  PubMed  Google Scholar 

  55. Iacobuzio-Donahue CA, Fu B, Yachida S, Luo M, Abe H, Henderson CM, et al. DPC4 gene status of the primary carcinoma correlates with patterns of failure in patients with pancreatic cancer. J Clin Oncol. 2009;27(11):1806–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chapman KL, Witek ME, Chen H, Showalter TN, Bar-Ad V, Harrison AS. Pancreatic cancer planning: complex conformal vs modulated therapies. Med Dosim. 2016;41:100.

    Article  PubMed  Google Scholar 

  57. Ali AN, Dhabaan AH, Jarrio CS, Siddiqi AK, Landry JC. Dosimetric comparison of volumetric modulated arc therapy and intensity-modulated radiation therapy for pancreatic malignancies. Med Dosim. 2012;37(3):271–5.

    Article  PubMed  Google Scholar 

  58. Herman JM, Crane CH, Iacobuzio-Donahue C, Abrams RA. Pancreatic cancer. In: Gunderson LLTJ, editor. Clinical radiation oncology: expert consult. 4th ed: Elsevier; 2015. p. 934–59.

    Google Scholar 

  59. Kumar R, Rosati LM, Herman JM. Stereotactic body radiation therapy as an emerging option for localized pancreatic cancer. In: MHGAS K, editor. Multimodality management of borderline resectable and locally advanced pancreatic cancer: Springer; 2015.

    Google Scholar 

  60. Moningi S, Marciscano AE, Rosati LM, Ng SK, Teboh Forbang R, Jackson J, et al. Stereotactic body radiation therapy in pancreatic cancer: the new frontier. Expert Rev Anticancer Ther. 2014;14(12):1461–75.

    Article  CAS  PubMed  Google Scholar 

  61. Hoyer M, Roed H, Sengelov L, Traberg A, Ohlhuis L, Pedersen J, et al. Phase-II study on stereotactic radiotherapy of locally advanced pancreatic carcinoma. Radiother Oncol. 2005;76(1):48–53.

    Article  PubMed  Google Scholar 

  62. Koong AC, Le QT, Ho A, Fong B, Fisher G, Cho C, et al. Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2004;58(4):1017–21.

    Article  PubMed  Google Scholar 

  63. Schellenberg D, Goodman KA, Lee F, Chang S, Kuo T, Ford JM, et al. Gemcitabine chemotherapy and single-fraction stereotactic body radiotherapy for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2008;72(3):678–86.

    Article  CAS  PubMed  Google Scholar 

  64. Schellenberg D, Kim J, Christman-Skieller C, Chun CL, Columbo LA, Ford JM, et al. Single-fraction stereotactic body radiation therapy and sequential gemcitabine for the treatment of locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2011;81(1):181–8.

    Article  PubMed  Google Scholar 

  65. Herman JM, Chang DT, Goodman KA, Dholakia AS, Raman SP, Hacker-Prietz A, et al. Phase 2 multi-institutional trial evaluating gemcitabine and stereotactic body radiotherapy for patients with locally advanced unresectable pancreatic adenocarcinoma. Cancer. 2014; https://doi.org/10.1002/cncr.29161.

    Article  CAS  PubMed  Google Scholar 

  66. Mahadevan A, Jain S, Goldstein M, Miksad R, Pleskow D, Sawhney M, et al. Stereotactic body radiotherapy and gemcitabine for locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys. 2010;78(3):735–42.

    Article  PubMed  Google Scholar 

  67. Polistina F, Costantin G, Casamassima F, Francescon P, Guglielmi R, Panizzoni G, et al. Unresectable locally advanced pancreatic cancer: a multimodal treatment using neoadjuvant chemoradiotherapy (gemcitabine plus stereotactic radiosurgery) and subsequent surgical exploration. Ann Surg Oncol. 2010;17(8):2092–101.

    Article  PubMed  Google Scholar 

  68. Gurka MK, Collins SP, Slack R, Tse G, Charabaty A, Ley L, et al. Stereotactic body radiation therapy with concurrent full-dose gemcitabine for locally advanced pancreatic cancer: a pilot trial demonstrating safety. Radiat Oncol. 2013;8:44–717X-8-44.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Mellon EA, Hoffe SE, Springett GM, Frakes JM, Strom TJ, Hodul PJ, et al. Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015;54(7):979–85.

    Article  CAS  PubMed  Google Scholar 

  70. Moningi S, Dholakia AS, Raman SP, Blackford A, Cameron JL, Le DT, et al. The role of stereotactic body radiation therapy for pancreatic cancer: a single-institution experience. Ann Surg Oncol. 2015;22(7):2352–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lominska CE, Unger K, Nasr NM, Haddad N, Gagnon G. Stereotactic body radiation therapy for reirradiation of localized adenocarcinoma of the pancreas. Radiat Oncol. 2012;7:74–717X-7-74.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wild AT, Hiniker S, Chang DT, Tran PT, Khashab MA, Limaye MR, et al. Re-irradiation with stereotactic body radiation therapy as a novel treatment option for isolated local recurrence of pancreatic cancer after multimodality therapy: experience from two institutions. J Gastrointest Oncol. 2013 Dec;4(4):343–51.

    PubMed  PubMed Central  Google Scholar 

  73. Dagoglu N, Callery M, Moser J, Tseng J, Kent T, Bullock A, et al. Stereotactic body radiotherapy (SBRT) reirradiation for recurrent pancreas cancer. J Cancer. 2016;7(3):283–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hong TS, Ryan DP, Borger DR, Blaszkowsky LS, Yeap BY, Ancukiewicz M, et al. A phase 1/2 and biomarker study of preoperative short course chemoradiation with proton beam therapy and capecitabine followed by early surgery for resectable pancreatic ductal adenocarcinoma. Int J Radiat Oncol Biol Phys. 2014;89(4):830–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nichols RC, Huh S, Li Z, Rutenberg M. Proton therapy for pancreatic cancer. World J Gastrointest Oncol. 2015;7(9):141–7.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Terashima K, Demizu Y, Hashimoto N, Jin D, Mima M, Fujii O, et al. A phase I/II study of gemcitabine-concurrent proton radiotherapy for locally advanced pancreatic cancer without distant metastasis. Radiother Oncol. 2012;103(1):25–31.

    Article  PubMed  Google Scholar 

  77. Takatori K, Terashima K, Yoshida R, Horai A, Satake S, Ose T, et al. Upper gastrointestinal complications associated with gemcitabine-concurrent proton radiotherapy for inoperable pancreatic cancer. J Gastroenterol. 2014;49(6):1074–80.

    Article  CAS  PubMed  Google Scholar 

  78. Ding X, Dionisi F, Tang S, Ingram M, Hung CY, Prionas E, et al. A comprehensive dosimetric study of pancreatic cancer treatment using three-dimensional conformal radiation therapy (3DCRT), intensity-modulated radiation therapy (IMRT), volumetric-modulated radiation therapy (VMAT), and passive-scattering and modulated-scanning proton therapy (PT). Med Dosim. 2014;39(2):139–45.

    Article  PubMed  Google Scholar 

  79. Thompson RF, Mayekar SU, Zhai H, Both S, Apisarnthanarax S, Metz JM, et al. A dosimetric comparison of proton and photon therapy in unresectable cancers of the head of pancreas. Med Phys. 2014;41(8):081711.

    Article  PubMed  Google Scholar 

  80. Santoro JP, Yorke E, Goodman KA, Mageras GS. From phase-based to displacement-based gating: a software tool to facilitate respiration-gated radiation treatment. J Appl Clin Med Phys. 2009;10(4):2982.

    Article  Google Scholar 

  81. Schellenberg D, Quon A, Minn AY, Graves EE, Kunz P, Ford JM, et al. 18Fluorodeoxyglucose PET is prognostic of progression-free and overall survival in locally advanced pancreas cancer treated with stereotactic radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77(5):1420–5.

    Article  PubMed  Google Scholar 

  82. Aitken KL, Hawkins MA. The role of radiotherapy and chemoradiation in the management of primary liver tumours. Clin Oncol (R Coll Radiol). 2014;26(9):569–80.

    Article  CAS  Google Scholar 

  83. Bujold A, Massey CA, Kim JJ, Brierley J, Cho C, Wong RK, et al. Sequential phase I and II trials of stereotactic body radiotherapy for locally advanced hepatocellular carcinoma. J Clin Oncol. 2013;31(13):1631–9.

    Article  PubMed  Google Scholar 

  84. Klein J, Dawson LA, Jiang H, Kim J, Dinniwell R, Brierley J, et al. Prospective longitudinal assessment of quality of life for liver cancer patients treated with stereotactic body radiation therapy. Int J Radiat Oncol Biol Phys. 2015;93(1):16–25.

    Article  PubMed  Google Scholar 

  85. Brade AM, Ng S, Brierley J, Kim J, Dinniwell R, Ringash J, et al. Phase 1 trial of sorafenib and stereotactic body radiation therapy for hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2016;94(3):580–7.

    Article  CAS  PubMed  Google Scholar 

  86. Kimura T, Aikata H, Takahashi S, Takahashi I, Nishibuchi I, Doi Y, et al. Stereotactic body radiotherapy for patients with small hepatocellular carcinoma ineligible for resection or ablation therapies. Hepatol Res. 2015;45(4):378–86.

    Article  PubMed  Google Scholar 

  87. Crane CH, Koay EJ. Solutions that enable ablative radiotherapy for large liver tumors: fractionated dose painting, simultaneous integrated protection, motion management, and computed tomography image guidance. Cancer. 2016;122:1974.

    Article  PubMed  Google Scholar 

  88. Abe T, Saitoh J, Kobayashi D, Shibuya K, Koyama Y, Shimada H, et al. Dosimetric comparison of carbon ion radiotherapy and stereotactic body radiotherapy with photon beams for the treatment of hepatocellular carcinoma. Radiat Oncol. 2015;10:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Qi WX, Fu S, Zhang Q, Guo XM. Charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis. Radiother Oncol. 2015;114(3):289–95.

    Article  PubMed  Google Scholar 

  90. Keane FK, Hong TS. Charged particle therapy for hepatocellular carcinoma: a commentary on a recently published meta-analysis. Ann Transl Med. 2015;3(22):365–5839.2015.12.36.

    PubMed  PubMed Central  Google Scholar 

  91. Gunther J, Krishnan S. The evolving evidence for the efficacy and safety of charged particle therapy for hepatocellular carcinoma-a commentary. Ann Transl Med. 2015;3(22):364–5839.2015.12.10.

    PubMed  PubMed Central  Google Scholar 

  92. Yamazaki H, Nakamura S, Suzuki G, Aibe N, Yoshida K. Superiority of charged particle therapy in treatment of hepatocellular carcinoma (regarding qi W.X. et al. charged particle therapy versus photon therapy for patients with hepatocellular carcinoma: a systematic review and meta-analysis). Radiother Oncol. 2016;118(2):420.

    Article  PubMed  Google Scholar 

  93. Lanciano R, Lamond J, Yang J, Feng J, Arrigo S, Good M, et al. Stereotactic body radiation therapy for patients with heavily pretreated liver metastases and liver tumors. Front Oncol. 2012;2:23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Osmundson EC, Wu Y, Luxton G, Bazan JG, Koong AC, Chang DT. Predictors of toxicity associated with stereotactic body radiation therapy to the central hepatobiliary tract. Int J Radiat Oncol Biol Phys. 2015;91(5):986–94.

    Article  PubMed  Google Scholar 

  95. Tao R, Krishnan S, Bhosale PR, Javle MM, Aloia TA, Shroff RT, et al. Ablative radiotherapy doses lead to a substantial prolongation of survival in patients with inoperable intrahepatic cholangiocarcinoma: a retrospective dose response analysis. J Clin Oncol. 2016;34(3):219–26.

    Article  CAS  PubMed  Google Scholar 

  96. Autorino R, Mattiucci GC, Ardito F, Balducci M, Deodato F, Macchia G, et al. Radiochemotherapy with gemcitabine in unresectable extrahepatic cholangiocarcinoma: long-term results of a phase II study. Anticancer Res. 2016;36(2):737–40.

    CAS  PubMed  Google Scholar 

  97. Ibarra RA, Rojas D, Snyder L, Yao M, Fabien J, Milano M, et al. Multicenter results of stereotactic body radiotherapy (SBRT) for non-resectable primary liver tumors. Acta Oncol. 2012;51(5):575–83.

    Article  PubMed  Google Scholar 

  98. Kopek N, Holt MI, Hansen AT, Hoyer M. Stereotactic body radiotherapy for unresectable cholangiocarcinoma. Radiother Oncol. 2010;94(1):47–52.

    Article  PubMed  Google Scholar 

  99. Barney BM, Olivier KR, Miller RC, Haddock MG. Clinical outcomes and toxicity using stereotactic body radiotherapy (SBRT) for advanced cholangiocarcinoma. Radiat Oncol. 2012;7:67–717X-7-67.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Polistina FA, Guglielmi R, Baiocchi C, Francescon P, Scalchi P, Febbraro A, et al. Chemoradiation treatment with gemcitabine plus stereotactic body radiotherapy for unresectable, non-metastatic, locally advanced hilar cholangiocarcinoma. Results of a five year experience. Radiother Oncol. 2011;99(2):120–3.

    Article  CAS  PubMed  Google Scholar 

  101. Makita C, Nakamura T, Takada A, Takayama K, Suzuki M, Ishikawa Y, et al. Clinical outcomes and toxicity of proton beam therapy for advanced cholangiocarcinoma. Radiat Oncol. 2014;9:26.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Ohkawa A, Mizumoto M, Ishikawa H, Abei M, Fukuda K, Hashimoto T, et al. Proton beam therapy for unresectable intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol. 2015;30(5):957–63.

    Article  PubMed  Google Scholar 

  103. Hong TS, Wo JY, Yeap BY, Ben-Josef E, McDonnell EI, Blaszkowsky LS, et al. Multi-institutional phase II study of high-dose hypofractionated proton beam therapy in patients with localized, unresectable hepatocellular carcinoma and intrahepatic cholangiocarcinoma. J Clin Oncol. 2016;34(5):460–8.

    Article  CAS  PubMed  Google Scholar 

  104. Hoehn RS, Wima K, Ertel AE, Meier A, Ahmad SA, Shah SA, et al. Adjuvant therapy for gallbladder cancer: an analysis of the National Cancer Data Base. J Gastrointest Surg. 2015;19(10):1794–801.

    Article  PubMed  Google Scholar 

  105. Wang J, Narang AK, Sugar EA, Luber B, Rosati LM, Hsu CC, et al. Evaluation of adjuvant radiation therapy for resected gallbladder carcinoma: a multi-institutional experience. Ann Surg Oncol. 2015;22(Suppl 3):1100–6.

    Article  Google Scholar 

  106. Ben-Josef E, Guthrie KA, El-Khoueiry AB, Corless CL, Zalupski MM, Lowy AM, et al. SWOG S0809: a phase II intergroup trial of adjuvant capecitabine and gemcitabine followed by radiotherapy and concurrent capecitabine in extrahepatic cholangiocarcinoma and gallbladder carcinoma. J Clin Oncol. 2015;33(24):2617–22.

    Article  CAS  PubMed  Google Scholar 

  107. Mahadevan A, Dagoglu N, Tseng JF, Khawaja K, Evenson A. Therapeutic potential of adjuvant stereotactic body radiotherapy for gallbladder cancer. Cureus. 2015;7(8):e299.

    PubMed  PubMed Central  Google Scholar 

  108. Trial SRC, Cedermark B, Dahlberg M, Glimelius B, Påhlman L, Rutqvist LE, Wilking N. Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med. 1997;336(14):980–7.

    Article  Google Scholar 

  109. Kapiteijn E, Marijnen CA, Nagtegaal ID, Putter H, Steup WH, Wiggers T, et al. Dutch Colorectal Cancer Group. Preoperative radiotherapy combined with total mesorectal excision for resectable rectal cancer. N Engl J Med. 2001;345(9):638–46.

    Article  CAS  PubMed  Google Scholar 

  110. Jones WE 3rd, Thomas CR Jr, Herman JM, Abdel-Wahab M, Azad N, Blackstock W, et al. ACR appropriateness criteria® resectable rectal cancer. Radiat Oncol. 2012;7:161.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Colorectal Cancer Collaborative Group. Adjuvant radiotherapy for rectal cancer: a systematic overview of 8,507 patients from 22 randomised trials. Lancet. 2001;358(9290):1291–304.

    Article  Google Scholar 

  112. Sauer R, Becker H, Hohenberger W, Rödel C, Wittekind C, Fietkau R, et al. German Rectal Cancer Study Group. Preoperative versus postoperative chemoradiotherapy for rectal cancer. N Engl J Med. 2004;351(17):1731–40.

    Article  CAS  PubMed  Google Scholar 

  113. Sauer R, Liersch T, Merkel S, Fietkau R, Hohenberger W, Hess C, et al. Preoperative versus postoperative chemoradiotherapy for locally advanced rectal cancer: results of the german CAO/ARO/AIO-94 randomized phase III trial after a median follow-up of 11 years. J Clin Oncol. 2012;30(16):1926–33.

    Article  CAS  PubMed  Google Scholar 

  114. Arbea L, Ramos LI, Martinez-Monge R, Moreno M, Aristu J. Intensity-modulated radiation therapy (IMRT) vs. 3D conformal radiotherapy (3DCRT) in locally advanced rectal cancer (LARC): dosimetric comparison and clinical implications. Radiat Oncol. 2010;5:17–717X-5-17.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Guerrero Urbano MT, Henrys AJ, Adams EJ, Norman AR, Bedford JL, Harrington KJ, et al. Intensity-modulated radiotherapy in patients with locally advanced rectal cancer reduces volume of bowel treated to high dose levels. Int J Radiat Oncol Biol Phys. 2006;65(3):907–16.

    Article  PubMed  Google Scholar 

  116. Tho LM, Glegg M, Paterson J, Yap C, MacLeod A, McCabe M, et al. Acute small bowel toxicity and preoperative chemoradiotherapy for rectal cancer: investigating dose-volume relationships and role for inverse planning. Int J Radiat Oncol Biol Phys. 2006;66(2):505–13.

    Article  PubMed  Google Scholar 

  117. Samuelian JM, Callister MD, Ashman JB, Young-Fadok TM, Borad MJ, Gunderson LL. Reduced acute bowel toxicity in patients treated with intensity-modulated radiotherapy for rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(5):1981–7.

    Article  PubMed  Google Scholar 

  118. Wong SJ, Winter K, Meropol NJ, Anne PR, Kachnic L, Rashid A, et al. Radiation Therapy Oncology Group 0247: a randomized phase II study of neoadjuvant capecitabine and irinotecan or capecitabine and oxaliplatin with concurrent radiotherapy for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2012;82(4):1367–75.

    Article  CAS  PubMed  Google Scholar 

  119. Hong TS, Moughan J, Garofalo MC, Bendell J, Berger AC, Oldenburg NB, et al. NRG oncology radiation therapy oncology group 0822: a phase 2 study of preoperative chemoradiation therapy using intensity modulated radiation therapy in combination with capecitabine and oxaliplatin for patients with locally advanced rectal cancer. Int J Radiat Oncol Biol Phys. 2015;93(1):29–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Tatsuzaki H, Urie MM, Willett CG. 3-D comparative study of proton vs. x-ray radiation therapy for rectal cancer. Int J Radiat Oncol Biol Phys. 1992;22(2):369–74.

    Article  CAS  PubMed  Google Scholar 

  121. Isacsson U, Montelius A, Jung B, Glimelius B. Comparative treatment planning between proton and X-ray therapy in locally advanced rectal cancer. Radiother Oncol. 1996;41(3):263–72.

    Article  CAS  PubMed  Google Scholar 

  122. Colaco RJ, Nichols RC, Huh S, Getman N, Ho MW, Li Z, et al. Protons offer reduced bone marrow, small bowel, and urinary bladder exposure for patients receiving neoadjuvant radiotherapy for resectable rectal cancer. J Gastrointest Oncol. 2014;5(1):3–8.

    PubMed  PubMed Central  Google Scholar 

  123. Mokutani Y, Yamamoto H, Uemura M, Haraguchi N, Takahashi H, Nishimura J, et al. Effect of particle beam radiotherapy on locally recurrent rectal cancer: three case reports. Mol Clin Oncol. 2015;3(4):765–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Vuong T, Belliveau PJ, Michel RP, Moftah BA, Parent J, Trudel JL, et al. Conformal preoperative endorectal brachytherapy treatment for locally advanced rectal cancer: early results of a phase I/II study. Dis Colon Rectum. 2002;45(11):1486–93; discussion 1493-5.

    Article  PubMed  Google Scholar 

  125. Vuong T, Devic S, Podgorsak E. High dose rate endorectal brachytherapy as a neoadjuvant treatment for patients with resectable rectal cancer. Clin Oncol (R Coll Radiol). 2007;19(9):701–5.

    Article  CAS  Google Scholar 

  126. Smith JA, Wild AT, Singhi A, Raman SP, Qiu H, Kumar R, et al. Clinicopathologic comparison of high-dose-rate endorectal brachytherapy versus conventional chemoradiotherapy in the neoadjuvant setting for resectable stages II and III low rectal cancer. Int J Surg Oncol. 2012;2012:406568.

    PubMed  PubMed Central  Google Scholar 

  127. Chuong MD, Fernandez DC, Shridhar R, Hoffe SE, Saini A, Hunt D, et al. High-dose-rate endorectal brachytherapy for locally advanced rectal cancer in previously irradiated patients. Brachytherapy. 2013;12(5):457–62.

    Article  PubMed  Google Scholar 

  128. Goodman KA, Patton CE, Fisher GA, Hoffe SE, Haddock MG, Parikh PJ, et al. Appropriate customization of radiation therapy for stage II and III rectal cancer: executive summary of an ASTRO clinical practice statement using the RAND/UCLA appropriateness method. Pract Radiat Oncol. 2016;6(3):166–75.

    Article  PubMed  Google Scholar 

  129. Bartelink H, Roelofsen F, Eschwege F, Rougier P, Bosset JF, Gonzalez DG, et al. Concomitant radiotherapy and chemotherapy is superior to radiotherapy alone in the treatment of locally advanced anal cancer: results of a phase III randomized trial of the european organization for research and treatment of cancer radiotherapy and gastrointestinal cooperative groups. J Clin Oncol. 1997;15(5):2040–9.

    Article  CAS  PubMed  Google Scholar 

  130. no authors listed. Epidermoid anal cancer: results from the UKCCCR randomised trial of radiotherapy alone versus radiotherapy, 5-fluorouracil, and mitomycin. UKCCCR anal cancer trial working party. UK Co-ordinating Committee on Cancer Research. Lancet. 1996;348(9034):1049–54.

    Article  Google Scholar 

  131. Simoni M, Gromoll J. Monitoring the transfection efficiency of the human follicle-stimulating hormone receptor cDNA in COS-7 cells: evaluation of the growth hormone transient gene expression assay system. J Endocrinol Investig. 1996;19(6):359–64.

    Article  CAS  Google Scholar 

  132. Ajani JA, Winter KA, Gunderson LL, Pedersen J, Benson AB 3rd, Thomas CR Jr, et al. Fluorouracil, mitomycin, and radiotherapy vs fluorouracil, cisplatin, and radiotherapy for carcinoma of the anal canal: a randomized controlled trial. JAMA. 2008;299(16):1914–21.

    Article  CAS  PubMed  Google Scholar 

  133. Gunderson LL, Winter KA, Ajani JA, Pedersen JE, Moughan J, Benson AB 3rd, et al. Long-term update of US GI intergroup RTOG 98-11 phase III trial for anal carcinoma: survival, relapse, and colostomy failure with concurrent chemoradiation involving fluorouracil/mitomycin versus fluorouracil/cisplatin. J Clin Oncol. 2012;30(35):4344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kachnic LA, Winter K, Myerson RJ, Goodyear MD, Willins J, Esthappan J, et al. RTOG 0529: a phase 2 evaluation of dose-painted intensity modulated radiation therapy in combination with 5-fluorouracil and mitomycin-C for the reduction of acute morbidity in carcinoma of the anal canal. Int J Radiat Oncol Biol Phys. 2013;86(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  135. John M, Pajak T, Flam M, Hoffman J, Markoe A, Wolkov H, et al. Dose escalation in chemoradiation for anal cancer: preliminary results of RTOG 92-08. Cancer J Sci Am. 1996;2(4):205–11.

    CAS  PubMed  Google Scholar 

  136. Weber HE, Droge LH, Hennies S, Herrmann MK, Gaedcke J, Wolff HA. Volumetric intensity-modulated arc therapy vs. 3-dimensional conformal radiotherapy for primary chemoradiotherapy of anal carcinoma: effects on treatment-related side effects and survival. Strahlenther Onkol. 2015;191(11):827–34.

    Article  PubMed  Google Scholar 

  137. Capizzi PJ, Horton CE. A case of colonial gender conflict: Thomas (thomasine) hall. Ann Plast Surg. 1989;23(4):320–2.

    Article  CAS  PubMed  Google Scholar 

  138. Mok H, Briere TM, Martel MK, Beddar S, Delclos ME, Krishnan S, et al. Comparative analysis of volumetric modulated arc therapy versus intensity modulated radiation therapy for radiotherapy of anal carcinoma. Pract Radiat Oncol. 2011;1(3):163–72.

    Article  PubMed  Google Scholar 

  139. Anand A, Bues M, Rule WG, Keole SR, Beltran CJ, Yin J, et al. Scanning proton beam therapy reduces normal tissue exposure in pelvic radiotherapy for anal cancer. Radiother Oncol. 2015;117(3):505–8.

    Article  PubMed  Google Scholar 

  140. Ojerholm E, Kirk ML, Thompson RF, Zhai H, Metz JM, Both S, et al. Pencil-beam scanning proton therapy for anal cancer: a dosimetric comparison with intensity-modulated radiotherapy. Acta Oncol. 2015;54(8):1209–17.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph M. Herman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Rosati, L.M., Herman, J.M. (2019). Advances in Radiation Therapy for Gastrointestinal Cancers. In: Yalcin, S., Philip, P. (eds) Textbook of Gastrointestinal Oncology. Springer, Cham. https://doi.org/10.1007/978-3-030-18890-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-18890-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-18888-7

  • Online ISBN: 978-3-030-18890-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics