Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 572 Accesses

Abstract

Over the past few decades, the field of marine engineering witnessed a significant growth. The exploration of what lies below the surface and the exploitation of the resources available in the ocean depths attracted (and continue to attract) scientists and businessmen in equal measure. Regardless of the specific background, people involved in underwater operations often resort to the aid of robots, since the environment they work in is essentially hostile to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alcocer A, Oliveira P, Pascoal A (2007) Study and Implementation of an EKF GIB-based Underwater Positioning System. Control Eng Pract 15(6):689–701

    Article  Google Scholar 

  2. Alessandri A, Caccia M, Indiveri G, Veruggio G (1998) Application of LS and EKF techniques to the identification of underwater vehicles. In: Proceedings of the 1998 IEEE International Conference on Control Applications. Trieste (IT), pp 1084–1088

    Google Scholar 

  3. Allotta B, Caiti A, Chisci L, Costanzi R, Di Corato F, Fanelli F, Fantacci C, Fenucci D, Meli E, Ridolfi A (2015) A comparison between EKF-based and UKF-based navigation algorithms for AUVs localization. In: Proceedings of the MTS/IEEE OCEANS’15 Genova, Genova (IT)

    Google Scholar 

  4. Allotta B, Caiti A, Costanzi R, Fanelli F, Fenucci D, Meli E, Ridolfi A (2016) A new AUV navigation system exploiting unscented Kalman filter. J Ocean Eng 113:121–132

    Article  Google Scholar 

  5. Allotta B, Costanzi R, Fanelli F, Monni N, Paolucci L, Ridolfi A (2017) Sea currents estimation during AUV navigation using Unscented Kalman Filter. In: Proceedings of the IFAC 2017 World Congress, Toulouse (FR)

    Google Scholar 

  6. Allotta B, Costanzi R, Fanelli F, Monni N, Ridolfi A (2015) Single axis FOG aided attitude estimation algorithm for mobile robots. J Mechatronics 30:158–173

    Article  Google Scholar 

  7. Ã…nonsen KB, Hallingstad O (2007) Sigma point Kalman filter for underwater terrain-based navigation. In: Proceedings of the IFAC Conference on Control Applications in Marine Systems, Bol (Hr)

    Google Scholar 

  8. Arrichiello F, De Palma D, Indiveri G, Perlangeli G (2015) Observability analysis for single range localization. In: Proceedings of the MTS/IEEE OCEANS’15 Genova, Genova (IT)

    Google Scholar 

  9. Bahr A, Leonard JJ, Fallon MF (2009) Cooperative localization for autonomous underwater vehicles. Int J Robot Res 28:714–728

    Article  Google Scholar 

  10. Barisic M, Vasilijevic A, Nad D (2012) Sigma-point unscented Kalman filter used for AUV navigation. In: 20th Mediterranean Conference on Control and Automation, Barcelona (ES)

    Google Scholar 

  11. Bar-Shalom Y, Li XR, Kirubarajan T (2001) Estimation with applications to tracking and navigation: theory algorithms and software. Wiley

    Google Scholar 

  12. Bayat M, Aguiar AP (2013) AUV range-only localization and mapping: observer design and experimental results. In: Proceedings of the 2013 European Control Conference, pp. 4394–4399. Zürich (CH)

    Google Scholar 

  13. Bayat M, Crasta N, Aguiar AP, Pascoal AM (2016) Range-based underwater vehicle localization in the presence of unknown ocean currents: theory and experiments. IEEE Trans Control Syst Technol 24(1)

    Article  Google Scholar 

  14. Costanzi R, Fanelli F, Monni N, Ridolfi A, Allotta B (2016) An attitude estimation algorithm for mobile robots under unknown magnetic disturbances. IEEE/ASME Trans Mechatronics 21:1900–1911

    Article  Google Scholar 

  15. Costanzi R, Fanelli F, Ridolfi A, Allotta B (2016) Simultaneous navigation state and sea current estimation through augmented state unscented Kalman Filter. In: Proceedings of the MTS/IEEE OCEANS’16 Monterey. Monterey (CA, US)

    Google Scholar 

  16. Crasta N, Bayat M, Aguiar AP, Pascoal AM (2014) Observability analysis of 3D AUV trimming trajectories in the presence of ocean currents using single beacon navigation. In: Proceedings of the 19th World Congress of the International Federation of Automatic Control. Cape Town (ZA), pp 4222–4227

    Google Scholar 

  17. El-Hawary F, Jing Y (1995) Robust regression-based EKF for tracking underwater targets. IEEE J Ocean Eng 20(1):31–41

    Article  Google Scholar 

  18. Fossen TI, Sagatun SI, Sørensen AJ (1996) Identification of dynamically positioned ships. J Control Eng Pract 4:369–376

    Article  Google Scholar 

  19. Gadre AS, Stilwell DJ (2005) Underwater navigation in the presence of unknown currents based on range measurements from a single location. In: Proceedings of the 2005 American Control Conference. Portland (OR, US), pp 656–661

    Google Scholar 

  20. Gebre-Egziabher D, Elkaim G, David Powell J, Parkinson B (2006) Calibration of strapdown magnetometers in magnetic field domain. J Aerosp Eng 19(2)

    Article  Google Scholar 

  21. Grip HF, Fossen TI, Johansen TA, Saberi A (2012) Integrated satellite and inertial navigation with gyro bias estimation and explicit stability guarantees. In: Proceedings of the 2005 American Control Conference. Montreal (CA)

    Google Scholar 

  22. Grip HF, Fossen TI, Johansen TA, Saberi A (2012) Attitude estimation using biased gyro and vector measurements with time-varying reference vectors. IEEE Trans Autom Control 57(5)

    Google Scholar 

  23. Hajiyev C, Ata M, Dinc M, Soken H (2012) Fault tolerant estimation of autonomous underwater vehicle dynamics via robust UKF. In: Proceedings of the 13th International Carpathian Control Conference. High Tatras (SK)

    Google Scholar 

  24. Hamel T, Mahony R (2006) Attitude estimation on SO(3) based on direct inertial measurements. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation. Orlando (FL, US), pp 2170–2175

    Google Scholar 

  25. Hegrenaes Ø, Hallingstad O (2011) Model-aided INS with sea current estimation for robust underwater navigation. IEEE J Ocean Eng 36(2)

    Article  Google Scholar 

  26. Jouffroy J, Reger J (2006) An algebraic perspective to single-transponder underwater navigation. In: Proceedings of the 2006 IEEE International Conference on Control Applications. Munich (DE), pp 1789–1794

    Google Scholar 

  27. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. In: Proceedings of the IEEE, vol 92(3), pp 401–422

    Article  Google Scholar 

  28. Julier SJ, Uhlmann JK (1997) A new extension of the Kalman filter to nonlinear systems. In: Proceedings of the SPIE Signal Processing, Sensor Fusion and Target Recognition VI Conference, vol 3068

    Google Scholar 

  29. Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82(D):35–45

    Article  Google Scholar 

  30. Larsen MB (2000) Synthetic long baseline navigation of underwater vehicles. In: Proceedings of the MTS/IEEE OCEANS 2000 Conference and Exhibition. Providence (RI, US), pp 2043–2050

    Google Scholar 

  31. Mahony RE, Hamel T, Pflimlin JM (2008) Nonlinear complementary filters on the special orthogonal group. IEEE Trans Autom Control 53(5):1203–1218

    Article  MathSciNet  Google Scholar 

  32. Mallios A, Ridao P, Ribas D, Maruelli F, Petillot Y (2010) EKF-SLAM for AUV navigation under probabilistic sonar scan-matching. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Taipei (CN)

    Google Scholar 

  33. Medagoda L, Williams SB, Pizarro O, Jakuba MV (2011) Water column current profile aided localisation combined with view-based SLAM for autonomous underwater vehicle navigation. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai (CN), pp 3048–3055

    Google Scholar 

  34. Nijmeijer H, Fossen TI (1999) New directions in nonlinear observer design. Springer

    Google Scholar 

  35. Official ISME website: www.isme.unige.it

  36. Official website of the ARCHEOSUb project: www.archeosub.eu

  37. Official website of the ARROWS project: www.arrowsproject.eu

  38. Official website of the euRathlon competition: www.eurathlon.eu

  39. Official website of the euRobotics European Robotics League: www.eu-robotics.net/robotics_league

  40. Official website of the SAUC-E competition: www.sauc-europe.org

  41. Official website of the SUNRISE project: www.fp7-sunrise.eu

  42. Official website of the THESAURUS project:www.thesaurus.isti.cnr.it

  43. Osborn J, Qualls S, Canning J, Anderson M, Edwards D, Wolbrecht E (2015) AUV state estimation and navigation to compensate for ocean currents. In: Proceedings of the MTS/IEEE OCEANS’15 Washington. Washington (DC, US)

    Google Scholar 

  44. Ridao P, Ribas D, Hernàndez E, Rusu A, (2011) USBL/DVL navigation through delayed position fixes. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai (CN), pp 2344–2349

    Google Scholar 

  45. Rogowski P, Terrill E (2015) Mapping velocity field in coastal waters using an autonomous underwater vehicle. In: Proceedings of the 2015 IEEE/OES 11th Conference on Current, Waves and Turbulence Measurement. St. Petersburg (FL, US)

    Google Scholar 

  46. Sabet M, Sarhadi P, Zarini M (2014) Extended and unscented Kalman filters for parameter estimation of an autonomous underwater vehicle. J Ocean Eng 91:329–339

    Article  Google Scholar 

  47. Salcuedan S (1991) A globally convergent angular velocity observer for rigid body motion. IEEE Trans Autom Control 36(12)

    Google Scholar 

  48. Stanway MJ (2012) Contributions to automated realtime underwater navigation. Ph.D. dissertation, MIT/WHOI Joint Program

    Google Scholar 

  49. Stanway MJ (2011) Dead reckoning through the water column with an acoustic doppler current profiler: field experiences. In: Proceedings of the MTS/IEEE OCEANS’11 Kona. Waikoloa (HI, US)

    Google Scholar 

  50. Stovner BB, Johansen TA (2017) Hydroacoustically aided inertial navigation for joint position and attitude estimation in absence of magnetic field measurements. In: Proceedings of the 2017 American Control Conference. Seattle (WA, US), pp 1211–1218

    Google Scholar 

  51. Vaganay J, Baccou P, Jouvencel B (2000) Homing by acoustic ranging to a single beacon. In: Proceedings of the MTS/IEEE OCEANS 2000 Conference and Exhibition. Providence (RI, US), pp 1457–1462

    Google Scholar 

  52. Vallicrosa G, Ridao P (2016) Sum of gaussian beacon range-only localization for AUV homing. Annu Rev Control 42:177–187

    Article  Google Scholar 

  53. Vik B, Fossen TI (2001) A nonlinear observer for GPS and INS integration. In: Proceedings of the 40th IEEE Conference on Decision and Control. Orlando (FL, US), pp 2956–2961

    Google Scholar 

  54. Wan EA, van der Merwe R (2001) The unscented Kalman filter. Kalman filtering and neural networks. Wiley, pp 221–280

    Google Scholar 

  55. Webster SE, Eustice RM, Singh H, Whitcomb LL (2009) Preliminary deep-water results in single-beacon one-way-travel-time acoustic navigation for underwater vehicles. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis (MO, US), pp 2053–2060

    Google Scholar 

  56. Webster SE, Walls JM, Whitcomb LL, Eustice RM (2013) Decentralized extended information filter for single-beacon cooperative acoustic navigation: theory and experiments. IEEE Trans Robot 29(4)

    Article  Google Scholar 

  57. Whitcomb LL, Yoerger LL, Singh H (1999) Combined Doppler/LBL based navigation of underwater vehicles. In: Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology. Durham (NH, US)

    Google Scholar 

  58. Yoerger DR, Murray PG, Stahl F (2001) Estimating the vertical velocity of buoyant deep-sea hydrothermal plumes through dynamic analysis of an autonomous vehicle. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Maui (HI, US)

    Google Scholar 

  59. Yoerger DR, Jakuba M, Bradley AM, Bingham B (2007) Techniques for deep sea near bottom survey using an autonomous underwater vehicle. Int J Robot Res 26:41–54

    Article  Google Scholar 

  60. Zhang Y (1998) Current velocity profiling from an autonomous underwater vehicle with the application of kalman filtering. M.Sc thesis, MIT/WHOI Joint Program

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fanelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fanelli, F. (2020). Introduction. In: Development and Testing of Navigation Algorithms for Autonomous Underwater Vehicles. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-15596-4_1

Download citation

Publish with us

Policies and ethics