Skip to main content

Bionanoparticles as Antimicrobial Agents

  • Chapter
  • First Online:
  • 878 Accesses

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Some microorganisms are regularly exposed to metals and often have inherent defense reductive mechanisms that mediate the synthesis of a diversity of nanoparticles. This property makes them some of the most beneficial biomachines for the synthesis of novel materials. A variety of nanoparticles (NPs) have been discovered for their antimicrobial properties; these include NPs of silica, Ag, titanium, copper, silver, and gold. The potential application of biogenic nanoparticles as pesticidal and antimicrobial agents will be also revised. We will highlight the mechanism of action of nanoparticles as bactericidal and antifungal agents in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad Z, Pandey R, Sharma S, Khuller GK (2005) Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Ind J Chest Dis Allied Sci 48:171–176

    Google Scholar 

  • Akaighe N, Mac Cuspie RI, Navarro DA, Aga DS, Banerjee S, Sohn M, Sharma VK (2011) Humic acid-induced silver nanoparticle formation under environmentally relevant conditions. Environ Sci Technol 45:3895–3901

    Article  CAS  Google Scholar 

  • Albrecht MA, Evans CW, Raston CL (2006) Green chemistry and the health implications of nanoparticles. Green Chem 8:417–432

    Article  CAS  Google Scholar 

  • Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Schnettler R (2004) An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 25(18):4383–4391

    Google Scholar 

  • Arumugam GV, Velayutham S, Shanmugavel S, Sundaram J (2015) Efficacy of nanostructured silica as a stored pulse protector against the infestation of bruchid beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Applied Nanosci 6(3):445–450

    Article  Google Scholar 

  • Barik TK, Sahu B, Swain V (2008) Nanosilica From medicine to pest control. Parasitol Res 103:253–258

    Article  CAS  Google Scholar 

  • Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nano–particles–a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493

    CAS  Google Scholar 

  • Burrell RE, McIntosh CL, Morris LR (1995) U.S. Patent No. 5,454,886. Washington, DC: U.S. Patent and Trademark Office

    Google Scholar 

  • Chandrashekharaiah M, Rathore MS, Sinha RB, Sahay A (2018) STUDIES ON POPULATION DYNAMICS OF XANTHOPIMPLA PEDATOR (F) ON TASAR SILK WORM, ANTHERAEA MYLITTA D IN DIFFERENT AGRO CLIMATIC ZONES OF INDIA. IJRD 3(9):65–69

    Google Scholar 

  • Chakravarthy B, ter Haar E, Bhat SS, McCoy CE, Denmark TK, Lotfipour S (2011) Simulation in medical school education: review for emergency medicine. West J Emerg Med 12(4):461

    Google Scholar 

  • Chakravarthy AK, Bhattacharyya A, Shashank PR, Epidi TT, Doddabasappa B, Mandal SK (2012a) DNA–tagged nano gold: a new tool for the control of the armyworm, Spodoptera litura Fab. (Lepidoptera: Noctuidae). Afr J Biotechnol 11:9295–9301

    Google Scholar 

  • Chakravarthy AK, Chandrashekharaiah SB, Kandakoor A, Bhattacharya K, Dhanabala K, Gurunatha K, Ramesh P (2012b) Bio efficacy of inorganic nanoparticles CdS, Nano–Ag and Nano–TiO2 against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Curr Biotica 6:271–281

    Google Scholar 

  • Chakravarthy VS, Reddy TP, Reddy VD, Rao KV (2014) Current status of genetic engineering in cotton (Gossypium hirsutum L): an assessment. Crit review biotech 34(2):144–160

    Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22:577–583

    Article  CAS  Google Scholar 

  • Chandra JH, Raj LA, Namasivayam SK, Bharani RA (2013) Improved pesticidal activity of fungal metabolite from Nomureae rileyi with chitosan nanoparticles. Proceedings of the International Conference on Advanced Nanomaterials and Emerging Engineering Technologies, 24–26 July, 2013, Chennai 387–390

    Google Scholar 

  • Christofoli M, Costa ECC, Bicalho KU, Domingues VC, Peixoto MF, Alves CCF, Cazal CM (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crop Prod 70:301–308

    Article  CAS  Google Scholar 

  • Danilcauk M, Lund A, Saldo J, Yamada H, Michalik J (2006) Conduction electron spin resonance of small silver particles. Spectrochimaca Acta Part A 63:89–191

    Google Scholar 

  • De A, Bose R, Kumar A, Mozumdar S (2014) Management of insect pests using nanotechnology: as modern approaches. In: Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer, New Delhi, pp 29–33

    Chapter  Google Scholar 

  • Debnath N, Das S, Seth D, Chandra R, Bhattacharya SC, Goswami A (2011) Entomotoxic effect of silica nanoparticles against Sitophilus oryzae (L.). J Pest Sci 84:99–105

    Article  Google Scholar 

  • Dobrucka R, Dlugaszewska J (2015) Antimicrobial activities of silver nanoparticles synthesized by using water extract of Arinicae anthodium. Ind J Microbiol 55:168–174

    Article  CAS  Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2008) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Jose Yacaman M (2002) Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Goswami A, Roy I, Sengupta S, Debnath N (2010) Novel applications of solid and liquid formulations of nanoparticles against insect pests and pathogens. Thin Solid Films 519:1252–1257

    Article  CAS  Google Scholar 

  • Gong P, Li H, He X, Wang K, Hu J, Tan W (2007) Preparation and antibacterial activity of Fe3O4@Ag nanoparticles. Nanotechnology 18:604–611

    Google Scholar 

  • Gu H, Ho PL, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3(9):1261–1263

    Article  CAS  Google Scholar 

  • Hatchett DW, Henry S (1996) Electrochemistry of sulfur adlayers on low-index faces of silver. J Phys Chem 100:9854–9859

    Article  CAS  Google Scholar 

  • Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12:407–409

    Article  CAS  Google Scholar 

  • Kirsner R, Orsted H, Wright B (2001) Matrix metalloproteinases in normal and impaired wound healing: a potential role of nanocrystalline silver. Wounds 13:5–10

    Google Scholar 

  • Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2008) Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42:5580–5585

    Article  CAS  Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki S, Tsuchido T (2003) Mode of bacterial action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Article  CAS  Google Scholar 

  • Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramirez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  • Narayanan K, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 153:1–13

    Article  Google Scholar 

  • Peterson MSM, Bouwman J, Chen A, Deutsch M (2007) Inorganic metallo-dielectric materials fabricated using two singlestep methods based on the Tollen’s process. J Colloid Interface Sci 306:41–49

    Article  CAS  Google Scholar 

  • Retchkiman-Schabes PS, Canizal G, Becerra-Herrera R, Zorrilla C, Liu HB, Ascencio JA (2006) Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29:95–99

    Article  Google Scholar 

  • Sankar MV, Abideen S (2015) Pesticidal effect of green synthesized silver and lead nanoparticles using Avicennia marina against grain storage pest Sitophilus oryzae. Int J Nanomater Biostruct 5:32–39

    Google Scholar 

  • Shankar SS, Ahmad A, Pasricha R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826

    Article  CAS  Google Scholar 

  • Shankar SS, Ahmad A, Sastry M (2003b) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19:1627–1631

    Article  CAS  Google Scholar 

  • Shao K, Yao J (2006) Preparation of silver nanoparticles via a non–template method. Mater Lett 60:3826–3829

    Article  CAS  Google Scholar 

  • Shin SH, Ye MK, Kim HS, Kang HS (2007) The effects of nano–silver on the proliferation and cytokine expression by peripheral blood mononuclear cells. Int Immunopharmacol 7:1813–1818

    Article  CAS  Google Scholar 

  • Shiva PG (2015) Studies on Genetic Diversity in rice (Oryza sativa. L.) and QTL mapping for cold tolerance at seedling stage and heat tolerance at grain filling stage (Doctoral dissertation, Professor Jayshankar Telangana state agricultural university, Rajendranagar, Hyderabad)

    Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterisation of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:1–9

    Article  Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram–negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  • Souza GIH, Marcato PD, Durn N, Esposito E (2004) Utilization of Fusarium oxysporum in the biosynthesis of silver nanoparticles and its antibacterial activities. IX National Meet Envir Microbiol, Curtiba

    Google Scholar 

  • Stadler T, Buteler M Weaver DK (2010) Novel use of nanostructured alumina as an insecticide, J clinical onc 28:21–37

    Google Scholar 

  • Tian J, Wong KK, Ho CM, Lok CN, Yu WY, Che CM, Chiu JF, Tam PK (2007) Tropical delivery of silver nanoparticles promotes wound healing. Chem Med Chem 2:129–136

    Article  CAS  Google Scholar 

  • Tomsic B, Simoncic B, Orel B, Zerjav M, Schroers HJ (2009) Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydr Polym 75:618–626

    Article  CAS  Google Scholar 

  • Tsuji T, Iryo KN, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution, influence of laser wavelength on particle size. Appl Surf Sci 202:80–85

    Article  CAS  Google Scholar 

  • Wang XF, Li SF, Yua HG, Yu JG (2011) In situ anion exchange synthesis and photocatalytic activity of Ag8W4O16/AgClnanoparticle core-shell nanorods. J Mol Catal A Chem 334:52–59

    Article  CAS  Google Scholar 

  • Wani IA, Khatoon S, Ganguly A, Ahmed J, Ahmad T (2013) Structural characterization and antimicrobial properties of silver nanoparticles prepared by inverse microemulsion method. Colloid Surf B 101:243–250

    Article  CAS  Google Scholar 

  • Yang FL, Li XG, Zhu F, Lei CL (2009) Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). J Agric Food Chem 57:0156–10162

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, K., Sinha, S.N. (2019). Bionanoparticles as Antimicrobial Agents. In: Abd-Elsalam, K., Prasad, R. (eds) Nanobiotechnology Applications in Plant Protection. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-13296-5_6

Download citation

Publish with us

Policies and ethics