Skip to main content

Exploring Intelligent Service Migration in Vehicular Networks

  • Conference paper
  • First Online:
Testbeds and Research Infrastructures for the Development of Networks and Communities (TridentCom 2018)

Abstract

Mobile edge clouds have great potential to address the challenges in vehicular networks by transferring storage and computing functions to the cloud. This brings many advantages of the cloud closer to the mobile user, by installing small cloud infrastructures at the network edge. However, it is still a challenge to efficiently utilize heterogeneous communication and edge computing architectures. In this paper, we investigate the impact of live service migration within a Vehicular Ad-hoc Network environment by making use of the results collected from a real experimental test-bed. A new proactive service migration model which considers both the mobility of the user and the service migration time for different services is introduced. Results collected from a real experimental test-bed of connected vehicles show that there is a need to explore proactive service migration based on the mobility of users. This can result in better resource usage and better Quality of Service for the mobile user. Additionally, a study on the performance of the transport protocol and its impact in the context of live service migration for highly mobile environments is presented with results in terms of latency, bandwidth, and burst and their potential effect on the time it takes to migrate services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barbarossa, S., Sardellitti, S., Lorenzo, P.D.: Communicating while computing: distributed mobile cloud computing over 5G heterogeneous networks. IEEE Signal Process. Mag. 31(6), 45–55 (2014). https://doi.org/10.1109/MSP.2014.2334709

    Article  Google Scholar 

  2. Femminella, M., Pergolesi, M., Reali, G.: Performance evaluation of edge cloud computing system for big data applications. In: 2016 5th IEEE International Conference on Cloud Networking (Cloudnet), pp. 170–175, October 2016. https://doi.org/10.1109/CloudNet.2016.56

  3. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wirel. Commun. Mob. Comput. 13, 1587–1611 (2013)

    Article  Google Scholar 

  4. Hussain, R., Son, J., Eun, H., Kim, S., Oh, H.: Rethinking vehicular communications: Merging VANET with cloud computing. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 606–609, December 2012. https://doi.org/10.1109/CloudCom.2012.6427481

  5. Imagane, K., Kanai, K., Katto, J., Tsuda, T.: Evaluation and analysis of system latency of edge computing for multimedia data processing. In: 2016 IEEE 5th Global Conference on Consumer Electronics, pp. 1–2, October 2016. https://doi.org/10.1109/GCCE.2016.7800393

  6. Kamiyama, N., Nakano, Y., Shiomoto, K., Hasegawa, G., Murata, M., Miyahara, H.: Analyzing effect of edge computing on reduction of web response time. In: 2016 IEEE Global Communications Conference (GLOBECOM), pp. 1–6, December 2016. https://doi.org/10.1109/GLOCOM.2016.7841607

  7. Kikuchi, J., Wu, C., Ji, Y., Murase, T.: Mobile edge computing based VM migration for QoS improvement. In: 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), pp. 1–5, October 2017. https://doi.org/10.1109/GCCE.2017.8229344

  8. Kim, S.Y., de Foy, X., Reznik, A.: Practical service allocation in mobile edge computing systems. In: 2017 27th International Telecommunication Networks and Applications Conference (ITNAC), pp. 1–6, November 2017. https://doi.org/10.1109/ATNAC.2017.8215372

  9. Lertsinsrubtavee, A., Ali, A., Molina-Jimenez, C., Sathiaseelan, A., Crowcroft, J.: PiCasso: a lightweight edge computing platform. In: 2017 IEEE 6th International Conference on Cloud Networking (CloudNet), pp. 1–7, September 2017. https://doi.org/10.1109/CloudNet.2017.8071529

  10. Li, H., Shou, G., Hu, Y., Guo, Z.: Mobile edge computing: progress and challenges. In: 2016 4th IEEE International Conference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pp. 83–84, March 2016. https://doi.org/10.1109/MobileCloud.2016.16

  11. Mach, P., Becvar, Z.: Mobile edge computing: a survey on architecture and computation offloading. IEEE Commun. Surv. Tutor. 19(3), 1628–1656 (2017). https://doi.org/10.1109/COMST.2017.2682318

    Article  Google Scholar 

  12. Machen, A., Wang, S., Leung, K.K., Ko, B.J., Salonidis, T.: Live service migration in mobile edge clouds. IEEE Wirel. Commun. 25(1), 140–147 (2018). https://doi.org/10.1109/MWC.2017.1700011

    Article  Google Scholar 

  13. Mapp, G., et al.: Exploiting location and contextual information to develop a comprehensive framework for proactive handover in heterogeneous environments. J. Comput. Netw. Commun. 2012, 1–17, Article ID 748163 (2012). https://doi.org/10.1155/2012/748163

    Article  Google Scholar 

  14. Mapp, G., Gosh, A., Paranthaman, V.V., Iniovosa, V.O., Loo, J., Vinel, A.: Exploring seamless connectivity and proactive handover techniques in VANET systems. In: Alam, M., Ferreira, J., Fonseca, J. (eds.) Intelligent Transportation Systems. SSDC, vol. 52, pp. 195–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28183-4_9

    Chapter  Google Scholar 

  15. Paranthaman, V.V., et al.: Building a prototype VANET testbed to explore communication dynamics in highly mobile environments. In: Guo, S., Wei, G., Xiang, Y., Lin, X., Lorenz, P. (eds.) TridentCom 2016. LNICST, vol. 177, pp. 81–90. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49580-4_8

    Chapter  Google Scholar 

  16. Khan, A.U.R., Othman, M., Madani, S.A., Khan, S.U.: A survey of mobile cloud computing application models. IEEE Commun. Surv. Tutor. 16(1), 393–413 (2014). https://doi.org/10.1109/SURV.2013.062613.00160

    Article  Google Scholar 

  17. Ren, J., Guo, H., Xu, C., Zhang, Y.: Serving at the edge: a scalable IoT architecture based on transparent computing. IEEE Netw. 31(5), 96–105 (2017). https://doi.org/10.1109/MNET.2017.1700030

    Article  Google Scholar 

  18. Riley, L., Mapp, G: yRFC3: the specification of SP-Lite. http://www.mdx.ac.uk/our-research/research-groups/y-comm-global-research-group/y-comm-research

  19. Rimal, B.P., Van, D.P., Maier, M.: Mobile edge computing empowered fiber-wireless access networks in the 5G era. IEEE Commun. Mag. 55(2), 192–200 (2017). https://doi.org/10.1109/MCOM.2017.1600156CM

    Article  Google Scholar 

  20. Sardis, F.: Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments. Ph.D. thesis (2014)

    Google Scholar 

  21. Sardis, F., Mapp, G., Loo, J., Aiash, M., Vinel, A.: On the investigation of cloud-based mobile media environments with service-populating and QoS-aware mechanisms. IEEE Trans. Multimed. 15(4), 769–777 (2013). https://doi.org/10.1109/TMM.2013.2240286

    Article  Google Scholar 

  22. Sun, X., Ansari, N.: EdgeIoT: mobile edge computing for the Internet of Things. IEEE Commun. Mag. 54(12), 22–29 (2016). https://doi.org/10.1109/MCOM.2016.1600492CM

    Article  Google Scholar 

  23. Tran, T.X., Hajisami, A., Pandey, P., Pompili, D.: Collaborative mobile edge computing in 5G networks: new paradigms, scenarios, and challenges. IEEE Commun. Mag. 55(4), 54–61 (2017). https://doi.org/10.1109/MCOM.2017.1600863

    Article  Google Scholar 

  24. Yu, Y.: Mobile edge computing towards 5G: vision, recent progress, and open challenges. China Commun. 13(Suppl. 2), 89–99 (2016). https://doi.org/10.1109/CC.2016.7833463

    Article  Google Scholar 

  25. Zhang, K., Mao, Y., Leng, S., Vinel, A., Zhang, Y.: Delay constrained offloading for mobile edge computing in cloud-enabled vehicular networks. In: 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), pp. 288–294, September 2016. https://doi.org/10.1109/RNDM.2016.7608300

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onyekachukwu A. Ezenwigbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ezenwigbo, O.A., Paranthaman, V.V., Mapp, G., Trestian, R. (2019). Exploring Intelligent Service Migration in Vehicular Networks. In: Gao, H., Yin, Y., Yang, X., Miao, H. (eds) Testbeds and Research Infrastructures for the Development of Networks and Communities. TridentCom 2018. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 270. Springer, Cham. https://doi.org/10.1007/978-3-030-12971-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12971-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12970-5

  • Online ISBN: 978-3-030-12971-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics