Skip to main content

Fault-Tolerant Design

  • Chapter
  • First Online:
  • 458 Accesses

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 201))

Abstract

This chapter discusses fault tolerant design. In the focus are the main aspects and components of fault-tolerant design. The discussion is arranged following a model of the levels of abstraction of a technical system. The presented insights concern requirements, the functional architecture, the physical structure as well as geometry and material.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alban, A., Darji, H., Imamura, A., Nakayama, M.K.: Efficient Monte Carlo methods for estimating failure probabilities. Reliab. Eng. Syst. Saf. 165, 376–394 (2017)

    Article  Google Scholar 

  2. Albertin, M.R., Pontes, H.L.J., Frota, E.R., Assuncao, M.B.: Flexible benchmarking: a new reference model. Benchmarking Int. J. 22(5), 920–944 (2015)

    Article  Google Scholar 

  3. Bennett, J.W., Mecrow, B.C., Atkinson, D.J., Atkinson, G.J.: Safety-critical design of electromechanical actuation systems in commercial aircraft. IET Electr. Power Appl. 5(1), 37–47 (2011)

    Article  Google Scholar 

  4. Bernard, R., Irlinger, R.: About watches and cars: winning R and D strategies in two branches. In: International Symposium “Engineering Design The Art of Building Networks” (2016)

    Google Scholar 

  5. Bertsche, B.: Reliability in Automotive and Mechanical Engineering. Springer, Berlin (2008)

    Google Scholar 

  6. Bhutta, K.S., Huq, F.: Benchmarking best practices: an integrated approach. Benchmarking Int. J. 6(3), 254–268 (1999)

    Article  Google Scholar 

  7. Blanke, M., Frei, C.W., Kraus, F., Patton, R.J., Staroswiecki, M.: What is fault tolerant control? In: Proceedings of IFAC Symposium on Fault Detection Supervision and Safety of Technical Processes, SAFEPROCESS (2000)

    Google Scholar 

  8. Carlson, C.S.: Effective FMEAs: Achieving Safe, Reliable, and Economical Products and Processes using Failure Mode and Effects Analysis. Wiley, New York (2012)

    Book  Google Scholar 

  9. Charrier, J.-J., Kulshreshtha, A.: A electric actuation for flight and engine control system: evolution, current trends and future challenges. In: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit (2007)

    Google Scholar 

  10. Chavez-Garcia, R.O., Aycard, O.: Multiple sensor fusion and classification for moving object detection and tracking. IEEE Trans. Intell. Transp. Syst. 99, 1–10 (2015)

    Google Scholar 

  11. Crnkovic, I., Asklund, U., Persson-Dahlqvist, A.: Implementing and Integrating Product Data Management and Software Configuration Management. Artech House, London (2003)

    MATH  Google Scholar 

  12. Daenzer, W.F., Huber, F.: Systems Engineering Methodik und Praxis. Verlag industrielle Organisation, Zurich (2002)

    Google Scholar 

  13. Downer, J.: When failure is an option: redundancy, reliability and regulation in complex technical systems. Centre for Analysis of Risk and Regulation (2009)

    Google Scholar 

  14. Dylla, N.: Denk- und Handlungsablufe beim Konstruieren. Hanser, Wien (1991)

    Google Scholar 

  15. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung. Zusammenarbeit. Carl Hanser Verlag, Munich, Denkabläufe, Methodeneinsatz (2013)

    Book  Google Scholar 

  16. Eisenbart, B., Gericke, K., Blessing, L.T.M., McAloone, T.C.: A dsm-based framework for integrated function modelling: concept, application and evaluation. Res. Eng. Des. 28(1), 25–41 (2016)

    Article  Google Scholar 

  17. Optimal sensors placement for flood forecasting modelling: Fattorusoa, G., Agrestab, A., Guarnieria, G., Lanzaa, B., Buonannoa, A., Molinarac, M., Marroccoc, C., De Vitoa, S., Tortorellac, F., Di Franciaa, G. Procedia Eng. 119, 927–936 (2015)

    Article  Google Scholar 

  18. Feng, J., Hajizadeh, I., Cinar, A., Samadi, S., Sevil, M., Frantz, N., Lazaro, C., Maloney, Z., Yu, X., Littlejohn, E., Quinn, L.: A multi-sensor error detection and functional redundancy algorithm for dynamic systems. In: Proceedings of the 2017 AIChE Annual Meeting (2017)

    Google Scholar 

  19. Gero, J.S., Kannengiesser, U.: The function-behaviour-structure ontology of design. In: Chakrabarti, A., Blessing, L.T.M. (eds.) An Anthology of Theories and Models of Design, pp. 263–283. Springer, Berlin (2014)

    Chapter  Google Scholar 

  20. Gney, M., Eskinat, E.: Optimal actuator and sensor placement in flexible structures using closed-loop criteria. J. Sound Vib. 312, 210–233 (2008)

    Article  Google Scholar 

  21. Gullo, L.J., Dixon, J.: Design for Safety. Wiley, New York (2017)

    Google Scholar 

  22. Herzog, R., Riedel, I., Ucinski, D.: Optimal sensor placement for joint parameter and state estimation problems in large-scale dynamical systems with applications to thermo-mechanics. Technische Universitaet Chemnitz (2017)

    Google Scholar 

  23. Holder, K., Zech, A., Ramsaier, M., Stetter, R., Niedermeier, H.-P., Rudolph, S., Till, M.: Model-based requirements management in gear systems design based on graph-based design languages. Appl. Sci. 7, (2017)

    Article  Google Scholar 

  24. Hruschka, P.: Business Analysis und Requirements Engineering: Produkte und Prozesse nachhaltig verbessern. Hanser, Munich (2014)

    Book  Google Scholar 

  25. Hu, B., Seiler, P.: A probabilistic method for certification of analytically redundant systems. Int. J. Appl. Math. Comput. Sci. 25(1), 103–116 (2015)

    Article  Google Scholar 

  26. Irschik, H., Nader, M.: Actuator placement in static bending of smart beams utilizing Mohr’s analogy. Eng. Struct. 31, 1698–1706 (2009)

    Article  Google Scholar 

  27. Isermann, R.: Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006)

    Book  Google Scholar 

  28. ISO/IEC/IEEE 29148:2011: Systems and software engineering - Life cycle processes - Requirements engineering

    Google Scholar 

  29. Li, L., Yu, S., Tao, J., Li, L.: A FBS-based energy modelling method for energy efficiency-oriented design. J. Clean. Prod. 172, 1–13 (2018)

    Article  Google Scholar 

  30. Lindemann, U.: Methodische Entwicklung technischer Produkte. Springer, Berlin (2009)

    Book  Google Scholar 

  31. Lu, W., Wen, R., Teng, J., Li, X., Li, C.: Data correlation analysis for optimal sensor placement using a bond energy algorithm. Measurement 91, 509–518 (2016)

    Article  Google Scholar 

  32. Morkos, B., Mathieson, J., Summers, J.D.: Comparative analysis of requirements change prediction models: manual, linguistic, and neural network. Res. Eng. Des. 25, (2014)

    Article  Google Scholar 

  33. Morris, K., Yang, S.: Comparison of actuator placement criteria for control of structures. J. Sound Vib. 353, 1–18 (2015)

    Article  Google Scholar 

  34. Mousavi, S., Gagnol, V., Bouzgarrou, B.C., Ray, P.: Stability optimization in robotic milling through the control of functional redundancies. Robot. Comput. Integr. Manuf. 50, 181–192 (2018)

    Article  Google Scholar 

  35. Nestorovic, T., Trajkov, M.: Optimal actuator and sensor placement based on balanced reduced models. Mech. Syst. Signal Process. 36, 271–289 (2013)

    Article  Google Scholar 

  36. Ohar, Z., Lahav, O., Ostfeld, A.: Optimal sensor placement for detecting organophosphate intrusions into water distribution systems. Water Res. 73, 193–203 (2015)

    Article  Google Scholar 

  37. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer, Berlin (2007)

    Book  Google Scholar 

  38. Ponn, J., Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte. Springer, Berlin (2011)

    Book  Google Scholar 

  39. Przystalka, P., Moczulski, W.: Optimal placement of sensors and actuators for leakage detection and localization. In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS) (2012)

    Google Scholar 

  40. Ramsaier, M., Spindler, C., Stetter, R., Rudolph, S., Till, M.: Digital representation in multicopter design along the product life-cycle. Procedia CIRP 62, 559–564 (2016)

    Article  Google Scholar 

  41. Ramsaier, M., Stetter, R., Till, M., Rudolph, S., Schumacher, A.: Automatic definition of density-driven topology optimization with graph-based design languages. In: Proceedings of the 12th World Congress on Structural and Multidisciplinary Optimisation (2017)

    Google Scholar 

  42. Rathi, S., Gupta, R.: Sensor placement methods for contamination detection in water distribution networks: a review. Procedia Eng. 89, 181–188 (2014)

    Article  Google Scholar 

  43. Rogova, E.S.: Reliability assessment of redundant safety systems with degradation. Delft University of Technology, 2017

    Google Scholar 

  44. Rouissi, F., Hoblos, G.: Fault tolerant sensor network design with respect to diagnosability properties. In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), pp. 1120–1124 (2012)

    Article  Google Scholar 

  45. Ryll, M., Buelthoff, H.H., Giordano, P.R.: Overactuation in UAVs for enhanced aerial manipulation: a novel quadrotor concept with tilting propellers. In: Proceedings of the 6th International Workshop on Human-Friendly Robotics (2013)

    Google Scholar 

  46. SAE J 1739:2009: Potential failure mode and effects analysis in design (design FMEA) and potential failure mode and effects analysis in manufacturing and assembly processes (Process FMEA) and effects analysis for machinery (Machinery FMEA)

    Google Scholar 

  47. Scheffer, M., Vergnon, R., van Nes, E.H., Cuppen, J.G.M., Peeters, E.T.H.M., Leijs, R., Nilsson, A.N.: The evolution of functionally redundant species; evidence from beetles. PLOS ONE 10(10), (2015)

    Article  Google Scholar 

  48. Schneider, M.G.E., van de Molengraft, M.J.G., Steinbuch, M.: Benefits of over-actuation in motion systems. In: Proceeding of the 2004 American Control Conference (2004)

    Google Scholar 

  49. Soldevila, A., Blesa, J., Tornil-Sin, S., Fernandez-Canti, R.M., Puig, V.: Sensor placement for classifier-based leak localization in water distribution networks using hybrid feature selection. Comput. Chem. Eng. 108, 152–162 (2018)

    Article  Google Scholar 

  50. Stetter, R., Pulm, U.: Problems and chances in industrial mechatronic product development. In: Proceedings of the 17th International Conference on Engineering Design (ICED 09), vol. 5, pp. 97–108 (2009)

    Google Scholar 

  51. Stetter, R., Simundsson, A.: Design for control. In: Proceedings of the 21st International Conference on Engineering Design (ICED 17), vol. 4, Design Methods and Tools, pp. 149–158 (2017)

    Google Scholar 

  52. Summers, H.H., Lygeros, J.: Optimal sensor and actuator placement in complex dynamical networks. In: Proceedings of the 19th World Congress The International Federation of Automatic Control (2014)

    Article  Google Scholar 

  53. Umeda, Y., Ishii, M., Yoshioka, M., Shimomura, Y., Tomiyama, T.: Supporting conceptual design based on the function-behavior-state modeler. Artif. Intell. Eng. Des. Anal. Manuf. AIEDAM 10(4), 275–288 (1996)

    Article  Google Scholar 

  54. Waeytens, J., Mahfoudhi, I., Chabchoub, M.-A., Chatellier, P.: Adjoint-based numerical method using standard engineering software for the optimal placement of chlorine sensors in drinking water networks. Environ. Model. Softw. 92, 229–238 (2017)

    Article  Google Scholar 

  55. Yan, F., Dridi, M., El Moundi, A.: An autonomous vehicle sequencing problem at intersections: a genetic algorithm approach. Int. J. Appl. Math. Comput. Sci. 23(1), 183–200 (2013)

    Article  Google Scholar 

  56. Yunlong, L., Xiaojun, W., Ren, H., Zhiping, Q.: Actuator placement robust optimization for vibration control system with interval parameters. Aerosp. Sci. Technol. 45, 88–98 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stetter .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stetter, R. (2020). Fault-Tolerant Design. In: Fault-Tolerant Design and Control of Automated Vehicles and Processes. Studies in Systems, Decision and Control, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-030-12846-3_3

Download citation

Publish with us

Policies and ethics