Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 201))

Abstract

This chapter explains the principles of fault-tolerant control. Points of main emphasis are FTC for continuous processes and discrete event systems, fault identification, fault-tolerant controllers and the prognosis of faults.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams, M., Doraswamy, N., Mathur, A.: Visual analysis of parallel and distributed programs in the time, event, and frequency domains. IEEE Trans. Parallel Distrib. Syst. 3(3), 672–685 (1992)

    Article  Google Scholar 

  2. Alves, L.V.R., Martins, L.R.R., Pena, P.N.: Ultrades - a library for modeling, analysis and control of discrete event systems. IFAC PapersOnLine 50(1), 5831–5836 (2017)

    Article  Google Scholar 

  3. Attoui, I., Fergani, N., Boutasseta, N., Oudjani, B., Deliou, A.: Structural reliability analysis with imprecise random and interval fields. J. Sound Vib. 397, 241–265 (2017)

    Article  Google Scholar 

  4. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.P.: Synchronization and linearity: an algebra for discrete event systems. J. Oper. Res. Soc. 45, 118–119 (1994)

    MATH  Google Scholar 

  5. Balemi, S.: Input/output discrete event processes and communication delays. Discret. Event Dyn. Syst. 4(1), 41–85 (1994)

    Article  MATH  Google Scholar 

  6. Bandyopadhyay, S., Bhattacharya, R.: Discrete and Continuous Simulation: Theory and Practice. CRC Press, Boca Raton (2017)

    MATH  Google Scholar 

  7. Barre, A., Deguilhem, B., Grolleau, S., Gerad, M., Suard, F., Riu, D.: A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. J. Power Sources 241, 680–689 (2013)

    Article  Google Scholar 

  8. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagn. Fault-Toler. Control. Springer, New York (2016)

    Google Scholar 

  9. Buciakowski, M., Witczak, M., Mrugalski, M., Theilliol, D.: A quadratic boundedness approach to robust dc motor fault estimation. Control Eng. Pract. 66, 181–194 (2017)

    Article  Google Scholar 

  10. Butkovic, P.: Max-Linear Systems: Theory and Algorithms. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  11. Cassandras, C.G., Lafortune, S.: Introduction to Discrete Event Systems. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  12. Chen, X., Xing, H.: Nonblocking check in fuzzy discrete event systems based on observation equivalence. Fuzzy Sets Syst. 269, 47–64 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Schutter, T., van den Boom, T.: Model predictive control for max-plus-linear discrete event systems. Automatica 37(7), 1049–1056 (2001)

    Article  MATH  Google Scholar 

  14. Debouk, R., Lafortune, S., Teneketzis, D.: On the effect of communication delays in failure diagnosis of decentralized discrete event systems. Discret. Event Dyn. Syst. Theory Appl. 13(3), 263–289 (2003)

    Google Scholar 

  15. Dotoli, M., Fanti, M., Mangini, A., Ukovich, W.: On-line fault detection in discrete event systems by Petri nets and integer linear programming. Automatica 45(11), 2665–2672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ducard, G.: Fault-tolerant Flight Control and Guidance Systems: Practical Methods for Small Unmanned Aerial Vehicles. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  17. Dziekan, L., Witczak, M., Korbicz, J.: Active fault-tolerant control design for Takagi-Sugeno fuzzy systems. Bull. Pol. Acad. Sci. Tech. Sci. 59(1), 93–102 (2011)

    MATH  Google Scholar 

  18. Farias de Santos, C.H., Cardozo, D.I.K., Polycarpou, M., Parisini, T., Cao, Y.: Bank of controllers and virtual thrusters for fault-tolerant control of autonomous underwater vehicles. Ocean Eng. 121, 210–223 (2016)

    Google Scholar 

  19. Fu, Y., Jia, L., Qin, Y., Yang, J.: Product function correntropy and its application in rolling bearing fault identification. Measurements 97, 88–99 (2017)

    Google Scholar 

  20. Gao, Z., Cecati, C., Ding, S.X.: A survey of fault diagnosis and fault-tolerant techniques part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62(6), 3757–3767 (2015)

    Article  Google Scholar 

  21. Giua, A., Silva, M.: Modeling, analysis and control of discrete event systems: a petri net prespective. IFAC PapersOnLine 50(1), 1772–1783 (2017)

    Article  Google Scholar 

  22. Grastien, A., Trave-Massuyes, L., Puig, V.: Solving diagnosability of hybrid systems via abstraction and discrete event techniques. IFAC PapersOnLine 50(1), 5023–5028 (2017)

    Article  Google Scholar 

  23. Guanqian, D., Jing, Q., Guanjun, L., Kehong, L.: A discrete event systems approach to discriminating intermittent from permanent faults. Chin. J. Aeronaut. 27(2), 390–396 (2014)

    Article  Google Scholar 

  24. Han, J., Zhang, H., Wang, Y., Liu, X.: Robust state/fault estimation and fault tolerant control for ts fuzzy systems with sensor and actuator faults. J. Frankl. Inst. 353, 615–641 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Heng, A., Zhang, S., Tan, A.C.C., Mathew, J.: Rotatin machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23, 724–739 (2009)

    Article  Google Scholar 

  26. Hillion, H.P., Proth, J.M.: Performance evaluation of job-shop systems using timed event-graphs. IEEE Trans. Autom. Control 34(1), 3–9 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  27. Isermann, R.: Fault Diagnosis Systems. An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006)

    Book  MATH  Google Scholar 

  28. Isermann, R.: Fault Diagnosis Applications: Model Based Condition Monitoring, Actuators, Drives, Machinery, Plants, Sensors, and Fault-Tolerant Systems. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  29. Jiang, Y., Qinglei, H., Ma, G.: Gearbox fault identification and classification with convolutional neural network. Shock Vib. 2015(390134), 1–10 (2015)

    Google Scholar 

  30. Johansen, T.A., Fossen, T.I.: Control allocation a survey. Automatica 49(5), 1087–1103 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kahlili, N., Zhang, X., Polycarpou, M., Parisini, T., Cao, Y.: Distributed adaptive fault-tolerant control of uncertain multi-agent systems. IFAC-PapersOnLine 48–21, 66–71 (2015)

    Article  Google Scholar 

  32. Kan, M.S., Tan, A.C.C., Mathew, J.: A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Signal Process. 62–63, 1–20 (2015)

    Article  Google Scholar 

  33. Keroglu, C., Hadjicostis, C.: Detectability in stochastic discrete event systems. In: 12th IFAC/IEEE Workshop on Discrete Event Systems, pp. 27–32 (2014)

    Google Scholar 

  34. Korbicz, J., Kościelny, J., Kowalczuk, Z., Cholewa, W. (eds.): Fault Diagnosis. Models, Artificial Intelligence, Applications. Springer, Berlin (2004)

    Google Scholar 

  35. Krysander, M., Aslund, J., Nyberg, M.: An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis. IEEE Trans. Syst. Man Cybern. 38(1), 197–206 (2008)

    Article  Google Scholar 

  36. Kumar, R., Garg, V.K.: Modeling and Control of Logical Discrete Event Systems, vol. 300. Springer Science and Business Media, Berlin (2012)

    MATH  Google Scholar 

  37. Lamperti, G., Zanella, M.: Flexible diagnosis of discrete-event systems by similarity-based reasoning techniques. Artif. Intell. 170(3), 232–297 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., Siegel, D.: Prognostics and health management design for rotary machinery systems - reviews, methodology and applications. Mech. Syst. Signal Process. 42, 314–334 (2014)

    Article  Google Scholar 

  39. Lefebvre, D.: On-line fault diagnosis with partially observed petri nets. IEEE Trans. Autom. Control 59(7), 1919–1924 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lei, Y., Li, N., Guo, L., Li, N., Yan, T., Lin, J.: Machinery health prognostics: a systematic review from data acquisition to RUL prediction. Mech. Syst. Signal Process. 104, 799–834 (2018)

    Article  Google Scholar 

  41. Lin, F., Wang, L.Y., Chen, W., Han, L., Shen, B.: N-diagnosability for active on-line diagnosis in discrete event systems. Automatica 83, 220–225 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Liu, F., Dziong, Z.: Decentralized diagnosis of fuzzy discrete-event systems. Eur. J. Control 3, 304–315 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, J., Li, Y.: The relationship of controllability between classical and fuzzy discrete-event systems. Inf. Sci. 178(21), 4142–4151 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mahmoud, M., Jiang, J., Zhang, Y.: Active Fault Tolerant Control Systems: Stochastic Analysis and Synthesis. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  45. Mahulkar, V.V.: Structural technology evaluation and analysis program (STEAP) Delivery order 0037: prognosis-based control reconfiguration for an aircraft with faulty actuator to enable performance in a degraded state. United States Air Force, 2010

    Google Scholar 

  46. Majdzik, P., Akielaszek-Witczak, A., Seybold, L., Stetter, R., Mrugalska, B.: A fault-tolerant approach to the control of a battery assembly system. Control Eng. Pract. 55, 139–148 (2016)

    Article  MATH  Google Scholar 

  47. Malik, R., Akesson, K., Flordal, H., Fabian, M.: Supremicaan efficient tool for large-scale discrete event systems. IFAC PapersOnLine 50(1), 5794–5799 (2017)

    Article  Google Scholar 

  48. Noura, H., Sauter, D., Hamelin, F., Theilliol, D.: Fault-tolerant control in dynamic systems. Application to a winding machine. IEEE Control Syst. Mag. 20(1), 33–49 (2000)

    Google Scholar 

  49. Noura, H., Theilliol, D., Ponsart, J., Chamseddine, A.: Fault-Tolerant Control Systems: Practical Applications. Springer, Berlin (2013)

    MATH  Google Scholar 

  50. Park, S.J., Cho, K.H.: Delay-robust supervisory control of discrete-event systems with bounded communication delays. IEEE Trans. Autom. Control 51(5), 911–915 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pazera, M., Witczak, M.: Towards robust process fault estimation for uncertain dynamic systems. In: Proceedings of the 21st International Conference on Methods and Models in Automation and Robotics (MMAR) (2016)

    Google Scholar 

  52. Pazera, M., Witczak, M., Buciakowski, M., Mrugalski, M.: Simultaneous estimation of multiple actuator and sensor faults for Takagi–Sugeno fuzzy systems. In: Proceedings of the 22nd International Conference on Methods and Models in Automation and Robotics (MMAR) (2017)

    Google Scholar 

  53. Ramadge, P.J.G., Wonham, M.W.: Supervisory control of a class of discrete event processes. SIAM J. Control Optim. 62(6), 206–230 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  54. Sahner, R.A., Trivedi, K., Puliafito, A.: Performance and Reliability Analysis of Computer Systems: An Example-based Approach Using the SHARPE Software Package. Springer Science and Business Media, Berlin (2012)

    MATH  Google Scholar 

  55. Seatzu, C., Silva, M., van Schuppen, J.: Control of Discrete-Event Systems. Lecture Notes in Control and Information Sciences, vol. 433. Springer, Berlin (2012)

    Google Scholar 

  56. Seybold, L., Witczak, M., Majdzik, P., Stetter, R.: Towards robust predictive fault-tolerant control for a battery assembly system. Int. J. Appl. Math. Comput. Sci. 25(4), 849–862 (2015)

    Article  MATH  Google Scholar 

  57. Si, X.-S., Wang, W., Hu, C.-H., Zhou, D.-H.: Remaining useful life estimationa review on the statistical data driven approaches. Eur. J. Oper. Res. 213(1), 1–14 (2011)

    Article  Google Scholar 

  58. Sikorska, J.Z., Hodkiewicz, M., Ma, L.: Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25, 1803–1836 (2011)

    Article  Google Scholar 

  59. Stetter, R., Witczak, M.: Degradation modelling for health monitoring systems. In: Proceedings of the Conference of Advanced Control and Diagnosis ACD 2014 (2014)

    Google Scholar 

  60. Tabatabaeipour, S.M.: Fault Diagnosis and Fault Tolerant Control of Hybrid Systems. Aalborg University, Aalborg (2010)

    Google Scholar 

  61. Takai, S., Kumar, R.: Distributed failure prognosis of discrete event systems with bounded-delay communications. IEEE Trans. Autom. Control 57(5), 1259–1265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  62. Theilliol, D., Cedric, J., Zhang, Y.: Actuator fault tolerant control design based on a reconfigurable reference input. Int. J. Appl. Math. Comput. Sci. 18(4), 553–560 (2008)

    Article  MATH  Google Scholar 

  63. Tripakis, S.: Decentralized control of discrete-event systems with bounded or unbounded delay communication. IEEE Trans. Autom. Control 49(9), 1489–1501 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ungermann, M., Lunze, J., Schwarzmann, D.: Test signal generation for service diagnosis based on local structural properties. Int. J. Appl. Math. Comput. Sci. 22(1), 55–65 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  65. Varga, A.: Solving Fault diagnosis Problems. Linear Synthesis Techniques. Springer, Berlin (2017)

    Book  MATH  Google Scholar 

  66. Wainer, G.A., D’Abreu, M.C.: Using a discrete-event system specifications (DEVS) for designing a modelica compiler. Adv. Eng. Softw. 79(1), 111–126 (2015)

    Article  Google Scholar 

  67. Williams, T., Ribadeneira, X., Billington, S., Kurfess, T.: Rolling element bearing diagnostics in run-to-failure lifetime testing. Mech. Syst. Signal Process. 15(5), 973–993 (2001)

    Article  Google Scholar 

  68. Witczak, M.: Modelling and Estimation Strategies for Fault Diagnosis of Non-linear Systems. Springer, Berlin (2007)

    MATH  Google Scholar 

  69. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-linear Systems. Analytical and Soft Computing Approaches. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  70. Yan, F., Dridi, M., El Moundi, A.: An autonomous vehicle sequencing problem at intersections: a genetic algorithm approach. Int. J. Appl. Math. Comput. Sci. 23(1), 183–200 (2013)

    Article  MATH  Google Scholar 

  71. Yang, S.S., Chen, J., Mohamed, H.A.F., Moghavvemi, M.: Sensor fault tolerant controller for a double inverted pendulum system. In: Proceedings of the 17th World Congress The International Federation of Automatic Control, pp. 2588–2594 (2008)

    Article  Google Scholar 

  72. Yin, N., Xing, J., Liu, Y., Li, Z., Lin, X.: A novel single-phase-to-ground fault identification and isolation strategy in wind farm collector line. Electr. Power Energy Syst. 94, 15–26 (2018)

    Article  Google Scholar 

  73. Yin, S., Luo, H., Ding, S.X.: A survey of fault-tolerant controllers based on safety-related issues. IEEE Trans. Ind. Electron. 61(5), 2402–2411 (2014)

    Article  Google Scholar 

  74. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems. Annu. Rev. Control 32(2), 229–252 (2008)

    Article  Google Scholar 

  75. Zhao, J., Chen, B., Shen, J.: Multidimensional nonorthogonal wavelet-sigmoid basis function neural networkfor dynamic process fault diagnosis. Comput. Chem. Eng. 23(1), 83–92 (1998)

    Article  Google Scholar 

  76. Zhu, W., Pu, H., Wang, D., Li, H.: Event-based consensus of second-order multi-agent systems with discrete time. Automatica 79, 78–83 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stetter .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stetter, R. (2020). Fault-Tolerant Control . In: Fault-Tolerant Design and Control of Automated Vehicles and Processes. Studies in Systems, Decision and Control, vol 201. Springer, Cham. https://doi.org/10.1007/978-3-030-12846-3_2

Download citation

Publish with us

Policies and ethics