Skip to main content

Bioreactor-Grown Shoot Cultures for the Secondary Metabolite Production

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

In vitro shoot cultures have long been investigated as a potential source of added value chemicals. Similarly to cell cultures, they can be employed for the production of compounds of interest such as drugs, antioxidants, and flavorings. Since in vitro shoots retain tissue differentiation of the parent plant, they are often capable of biosynthesizing secondary metabolites not found in unorganized cell suspensions. However, large-scale cultivation of shoot cultures is challenging and requires specialized bioreactor systems. In the current work, reports concerning secondary metabolite production in bioreactor-grown shoot cultures were reviewed with respect to the examined compounds, types of bioreactors used, and comparative studies involving different fermenter systems. The aim of the chapter is to compile the results of experimental papers, with the emphasis on providing important experimental details and outcomes of the studies, including productivities of bioreactor-grown shoot cultures with respect to secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

2iP:

6-(γ,γ-Dimethylallylamino)purine

ABA:

Abscisic acid

ALB:

Airlift Bioreactor

BA:

6-Benzylaminopurine

BB:

Balloon Bioreactor

BCB:

Bubble Column Bioreactor

BFB:

Bubble-Free Bioreactor

CIB:

Continuous Immersion Bioreactor

GA3:

Gibberellic acid

GPB:

Gas Phase Bioreactor

HB:

Hydraulic Bioreactor

IAA:

Indole-3-acetic acid

IBA:

Indole-3-butyric acid

ITR:

Immersion Time Ratio

KIN:

Kinetin

MC:

Misting cycle

MS:

Murashige-Skoog

NAA:

Naphthaleneacetic acid

PGR:

Plant Growth Regulators

RB:

Roller Bioreactor

SAB:

Simple Aeration Bioreactor

SH:

Schenk and Hildebrandt

STB:

Stirred-Tank Bioreactor

T:

Temperature

TDZ:

Thidiazuron

TIB:

Temporary Immersion Bioreactor

TS:

Timespan

References

  1. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25. https://doi.org/10.1023/A:1015871916833

    Article  CAS  Google Scholar 

  2. Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153. https://doi.org/10.1016/S0734-9750(02)00007-1

    Article  CAS  Google Scholar 

  3. Paek KY, Chakrabarty D, Hahn EJ (2005) Application of bioreactor systems for large scale production of horticultural and medicinal plants. Plant Cell Tissue Organ Cult 81:287–300. https://doi.org/10.1007/s11240-004-6648-z

  4. Gerth A, Schmidt D, Wilken D (2007) The production of plant secondary metabolites using bioreactors. Acta Hortic 764:95–103. https://doi.org/10.17660/ActaHortic.2007.764.11

  5. Smetanska I (2008) Production of secondary metabolites using plant cell cultures. Adv Biochem Eng Biotechnol 111:187–228. https://doi.org/10.1007/978-3-540-70536-9

    Article  CAS  PubMed  Google Scholar 

  6. Eibl R, Eibl D (2008) Design of bioreactors suitable for plant cell and tissue cultures. Phytochem Rev 7:593–598. https://doi.org/10.1007/s11101-007-9083-z

    Article  CAS  Google Scholar 

  7. Georgiev MI, Weber J, MacIuk A (2009) Bioprocessing of plant cell cultures for mass production of targeted compounds. Appl Microbiol Biotechnol 83:809–823. https://doi.org/10.1007/s00253-009-2049-x

    Article  CAS  PubMed  Google Scholar 

  8. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16. https://doi.org/10.1007/s11240-014-0467-7

    Article  CAS  Google Scholar 

  9. Wu J, Zhong JJ (1999) Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68:89–99. https://doi.org/10.1016/S0168-1656(98)00195-3

    Article  CAS  PubMed  Google Scholar 

  10. Tabata H (2004) Paclitaxel production by plant-cell-culture technology. Adv Biochem Eng Biotechnol 87:1–23. https://doi.org/10.1007/b13538

    Article  CAS  PubMed  Google Scholar 

  11. Zhao J, Verpoorte R (2007) Manipulating indole alkaloid production by Catharanthus roseus cell cultures in bioreactors: from biochemical processing to metabolic engineering. Phytochem Rev 6:435–457. https://doi.org/10.1007/s11101-006-9050-0

    Article  CAS  Google Scholar 

  12. Georgiev MI, Eibl R, Zhong J-J (2013) Hosting the plant cells in vitro: recent trends in bioreactors. Appl Microbiol Biotechnol 97:3787–3800. https://doi.org/10.1007/s00253-013-4817-x

    Article  CAS  PubMed  Google Scholar 

  13. Malik S, Cusidó RM, Mirjalili MH et al (2011) Production of the anticancer drug taxol in Taxus baccata suspension cultures: a review. Process Biochem 46:23–34. https://doi.org/10.1016/j.procbio.2010.09.004

    Article  CAS  Google Scholar 

  14. Malik S, Bhushan S, Sharma M, Ahuja PS (2016) Biotechnological approaches to the production of shikonins: a critical review with recent updates. Crit Rev Biotechnol 36:327–340. https://doi.org/10.3109/07388551.2014.961003

    Article  CAS  PubMed  Google Scholar 

  15. Doran PM (1993) Design of reactors for plant cells and organs. In: Bioprocess design and control. Springer Berlin Heidelberg, Berlin, pp 115–168

    Chapter  Google Scholar 

  16. Eibl R, Eibl D (2009) Plant cell-based bioprocessing. In: Cell and tissue reaction engineering: with a contribution by Martin Fussenegger and Wilfried Weber. Springer Berlin Heidelberg, Berlin, pp 315–356

    Chapter  Google Scholar 

  17. Zhong JJ (2002) Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng 94:591–599. https://doi.org/10.1016/S1389-1723(02)80200-6

    Article  CAS  PubMed  Google Scholar 

  18. Frense D (2007) Taxanes: perspectives for biotechnological production. Appl Microbiol Biotechnol 73:1233–1240. https://doi.org/10.1007/s00253-006-0711-0

    Article  CAS  PubMed  Google Scholar 

  19. Barbacka K, Baer-Dubowska W (2011) Searching for artemisinin production improvement in plants and microorganisms. Curr Pharm Biotechnol 12:1743–1751. https://doi.org/10.2174/138920111798376923

    Article  CAS  PubMed  Google Scholar 

  20. Murthy HN, Kim YS, Park SY, Paek KY (2014) Hypericins: biotechnological production from cell and organ cultures. Appl Microbiol Biotechnol 98:9187–9198. https://doi.org/10.1007/s00253-014-6119-3

    Article  CAS  PubMed  Google Scholar 

  21. Scragg AH (2007) The production of flavours by plant cell cultures. Flavours Fragrances Chem Bioprocess Sustain 55:599–614. https://doi.org/10.1007/978-3-540-49339-6_25

    Article  Google Scholar 

  22. Murthy HN, Hahn EJ, Paek KY (2008) Adventitious roots and secondary metabolism. Chin J Biotechnol 24:711–716. https://doi.org/10.1016/S1872-2075(08)60035-7

    Article  CAS  Google Scholar 

  23. Baque MA, Moh SH, Lee EJ et al (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants using bioreactor. Biotechnol Adv 30:1255–1267. https://doi.org/10.1016/j.biotechadv.2011.11.004

    Article  CAS  PubMed  Google Scholar 

  24. Murthy HN, Dandin VS, Paek KY (2016) Tools for biotechnological production of useful phytochemicals from adventitious root cultures. Phytochem Rev 15:129–145. https://doi.org/10.1007/s11101-014-9391-z

    Article  CAS  Google Scholar 

  25. Mishra BN, Ranjan R (2008) Growth of hairy-root cultures in various bioreactors for the production of secondary metabolites. Biotechnol Appl Biochem 49:1–10. https://doi.org/10.1042/ba20070103

  26. Georgiev MI, Pavlov AI, Bley T (2007) Hairy root type plant in vitro systems as sources of bioactive substances. Appl Microbiol Biotechnol 74:1175–1185. https://doi.org/10.1007/s00253-007-0856-5

    Article  CAS  PubMed  Google Scholar 

  27. Pistelli L, Giovannini A, Ruffoni B et al (2010) Hairy root cultures for secondary metabolites production. Adv Exp Med Biol 698:167–184. https://doi.org/10.1007/978-1-4419-7347-4_13

    Article  CAS  PubMed  Google Scholar 

  28. Steingroewer J, Bley T, Georgiev V et al (2013) Bioprocessing of differentiated plant in vitro systems. Eng Life Sci 13:26–38. https://doi.org/10.1002/elsc.201100226

    Article  CAS  Google Scholar 

  29. Park SY, Paek KY (2014) Bioreactor culture of shoots and somatic embryos of medicinal plants for production of bioactive compounds. In: Production of biomass and bioactive compounds using bioreactor technology. Springer Netherlands, Dordrecht, pp 337–368

    Google Scholar 

  30. Dörnenburg H, Knorr D (1995) Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzym Microb Technol 17:674–684. https://doi.org/10.1016/0141-0229(94)00108-4

    Article  Google Scholar 

  31. Wink M, Alfermann AW, Franke R et al (2005) Sustainable bioproduction of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3:90–100. https://doi.org/10.1079/PGR200575

    Article  CAS  Google Scholar 

  32. Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351. https://doi.org/10.1007/s00253-009-2354-4

    Article  CAS  PubMed  Google Scholar 

  33. Matkowski A (2008) Plant in vitro culture for the production of antioxidants – a review. Biotechnol Adv 26:548–560. https://doi.org/10.1016/j.biotechadv.2008.07.001

    Article  CAS  PubMed  Google Scholar 

  34. Jain N, Sharma V, Ramawat KG (2012) Shoot culture of Bacopa monnieri: standardization of explant, vessels and bioreactor for growth and antioxidant capacity. Physiol Mol Biol Plants 18:185–190. https://doi.org/10.1007/s12298-012-0103-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Piątczak E, Grzegorczyk-Karolak I, Wysokińska H (2014) Micropropagation of Rehmannia glutinosa Libosch.: production of phenolics and flavonoids and evaluation of antioxidant activity. Acta Physiol Plant 36:1693–1702. https://doi.org/10.1007/s11738-014-1544-6

    Article  CAS  Google Scholar 

  36. Valdez-Tapia R, Capataz-Tafur J, López-Laredo AR et al (2014) Effect of immersion cycles on growth, phenolics content, and antioxidant properties of Castilleja tenuiflora shoots. Vitr Cell Dev Biol – Plant 50:471–477. https://doi.org/10.1007/s11627-014-9621-5

    Article  CAS  Google Scholar 

  37. Jang HR, Lee HJ, Shohael AM et al (2016) Production of biomass and bioactive compounds from shoot cultures of Rosa rugosa using a bioreactor culture system. Hortic Environ Biotechnol 57:79–87. https://doi.org/10.1007/s13580-016-0111-z

    Article  CAS  Google Scholar 

  38. Łuczkiewicz M, Kokotkiewicz A (2005) Co-cultures of shoots and hairy roots of Genista tinctoria L. for synthesis and biotransformation of large amounts of phytoestrogens. Plant Sci 169:862–871. https://doi.org/10.1016/j.plantsci.2005.06.005

    Article  CAS  Google Scholar 

  39. Sharma V, Goyal S, Ramawat KG (2011) Increased puerarin biosynthesis during in vitro shoot formation in Pueraria tuberosa grown in growtek bioreactor with aeration. Physiol Mol Biol Plants 17:87–92. https://doi.org/10.1007/s12298-011-0049-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zobayed SMA, Murch SJ, Rupasinghe HPV et al (2004) Optimized system for biomass production, chemical characterization and evaluation of chemo-preventive properties of Scutellaria baicalensis Georgi. Plant Sci 167:439–446. https://doi.org/10.1016/j.plantsci.2004.04.022

    Article  CAS  Google Scholar 

  41. Kokotkiewicz A, Bucinski A, Luczkiewicz M (2015) Xanthone, benzophenone and bioflavonoid accumulation in Cyclopia genistoides (L.) Vent. (honeybush) shoot cultures grown on membrane rafts and in a temporary immersion system. Plant Cell Tissue Organ Cult 120:373–378. https://doi.org/10.1007/s11240-014-0586-1

    Article  CAS  Google Scholar 

  42. Jones AMP, Saxena PK, Murch SJ (2009) Elicitation of secondary metabolism in Echinacea purpurea L. by gibberellic acid and triazoles. Eng Life Sci 9:205–210. https://doi.org/10.1002/elsc.200800104

    Article  CAS  Google Scholar 

  43. Kiferle C, Lucchesini M, Maggini R et al (2014) In vitro culture of sweet basil: gas exchanges, growth, and rosmarinic acid production. Biol Plant 58:601–610. https://doi.org/10.1007/s10535-014-0434-5

    Article  CAS  Google Scholar 

  44. Szopa A, Kokotkiewicz A, Bednarz M et al (2019) Bioreactor type affects the accumulation of phenolic acids and flavonoids in microshoot cultures of Schisandra chinensis (Turcz.). Plant Cell, Tissue Organ Cult 139:199–206. https://doi.org/10.1007/s11240-019-01676-6

    Article  CAS  Google Scholar 

  45. Szopa A, Kokotkiewicz A, Król A et al (2018) Improved production of dibenzocyclooctadiene lignans in the elicited microshoot cultures of Schisandra chinensis (Chinese magnolia vine). Appl Microbiol Biotechnol 102:945–959. https://doi.org/10.1007/s00253-017-8640-7

    Article  CAS  PubMed  Google Scholar 

  46. Szopa A, Kokotkiewicz A, Luczkiewicz M, Ekiert H (2017) Schisandra lignans production regulated by different bioreactor type. J Biotechnol 247:11–17. https://doi.org/10.1016/j.jbiotec.2017.02.007

    Article  CAS  PubMed  Google Scholar 

  47. Arroo RRJ, Alfermann AW, Medarde M et al (2002) Plant cell factories as a source for anti-cancer lignans. Phytochem Rev 1:27–35. https://doi.org/10.1023/A:1015824000904

    Article  CAS  Google Scholar 

  48. Szopa A, Klimek-Szczykutowicz M, Kokotkiewicz A et al (2018) Phytochemical and biotechnological studies on Schisandra chinensis cultivar Sadova No. 1 – a high utility medicinal plant. Appl Microbiol Biotechnol 102:5105–5120. https://doi.org/10.1007/s00253-018-8981-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2003) Elevated carbon supply altered hypericin and hyperforin contents of St. John’s wort (Hypericum perforatum) grown in bioreactors. Plant Cell Tissue Organ Cult 75:143–149. https://doi.org/10.1023/A:1025053427371

    Article  CAS  Google Scholar 

  50. Zobayed SMA, Murch SJ, Rupasinghe HPV, Saxena PK (2004) In vitro production and chemical characterization of St. John’s wort (Hypericum perforatum L. cv ‘New Stem’). Plant Sci 166:333–340. https://doi.org/10.1016/j.plantsci.2003.10.005

    Article  CAS  Google Scholar 

  51. Karppinen K, György Z, Kauppinen M et al (2006) In vitro propagation of hypericum perforatum L. and accumulation of hypericins, pseudohypericins and phlotoglucinols. Propag Ornam Plants 6:170–179

    Google Scholar 

  52. Liu CZ, Wang YC, Guo C et al (1998) Production of artemisinin by shoot cultures of Artemisia annua L. in a modified inner-loop mist bioreactor. Plant Sci 135:211–217. https://doi.org/10.1016/S0168-9452(98)00086-7

    Article  CAS  Google Scholar 

  53. Liu CZ, Wang YC, Kang XZ et al (1999) Artemisinin production by adventitious shoots of Artemisia annua in a novel mist bioreactor. Acta Bot Sin 41:524–527

    CAS  Google Scholar 

  54. Liu CZ, Guo C, Wang YC, Ouyang F (2003) Comparison of various bioreactors on growth and artemisinin biosynthesis of Artemisia annua L. shoot cultures. Process Biochem 39:45–49. https://doi.org/10.1016/S0032-9592(02)00294-7

    Article  CAS  Google Scholar 

  55. Liu C, Zhao Y, Wang Y (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl Microbiol Biotechnol 72:11–20. https://doi.org/10.1007/s00253-006-0452-0

    Article  CAS  PubMed  Google Scholar 

  56. Grech-Baran M, Pietrosiuk A (2012) Artemisia species in vitro cultures for production of biologically active secondary metabolites. Biotechnologia 4:371–380. https://doi.org/10.5114/bta.2012.46591

    Article  Google Scholar 

  57. Scragg AH (1997) The production of aromas by plant cell cultures. In: Berger RG et al. (eds) Biotechnology of Aroma Compounds. Advances in Biochemical Engineering/Biotechnology, vol. 55. Springer, Berlin, Heidelberg, pp 239–263. https://doi.org/10.1007/BFb0102068

  58. Gounaris Y (2010) Biotechnology for the production of essential oils, flavours and volatile isolates. A review. Flavour Fragr J 25:367–386. https://doi.org/10.1002/ffj.1996

    Article  CAS  Google Scholar 

  59. Hilton MG, Jay A, Rhodes MJC, Wilson PDG (1995) Growth and monoterpene production by transformed shoot cultures of Mentha citrata and Mentha piperita in flasks and fermenters. Appl Microbiol Biotechnol 43:452–459. https://doi.org/10.1007/BF00218448

    Article  CAS  Google Scholar 

  60. Jesionek A, Kokotkiewicz A, Wlodarska P et al (2017) Bioreactor shoot cultures of Rhododendron tomentosum (Ledum palustre) for a large-scale production of bioactive volatile compounds. Plant Cell Tissue Organ Cult 131:51–64. https://doi.org/10.1007/s11240-017-1261-0

    Article  CAS  Google Scholar 

  61. Jesionek A, Kokotkiewicz A, Krolicka A et al (2018) Elicitation strategies for the improvement of essential oil content in Rhododendron tomentosum (Ledum palustre) bioreactor-grown microshoots. Ind Crop Prod 123:461–469. https://doi.org/10.1016/j.indcrop.2018.07.013

    Article  CAS  Google Scholar 

  62. Moreno PRH, van der Heijden R, Verpoorte R (1995) Cell and tissue cultures of Catharanthus roseus: a literature survey. Plant Cell Tissue Organ Cult 42:1–25. https://doi.org/10.1007/BF00037677

    Article  Google Scholar 

  63. Pietrosiuk A, Furmanowa M, Łata B (2007) Catharanthus roseus: micropropagation and in vitro techniques. Phytochem Rev 6:459–473. https://doi.org/10.1007/s11101-006-9049-6

    Article  CAS  Google Scholar 

  64. Van Der Heijden R, Verpoorte R, Ten Hoopen HJG (1989) Cell and tissue cultures of Catharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tissue Organ Cult 18:231–280. https://doi.org/10.1007/BF00043397

    Article  Google Scholar 

  65. Yingjin Y, Zongding H (1994) Bioreactor for two-stage multiple shoot culture of Catharanthus roseus. Chinese J Chem Eng 2:92–97

    Google Scholar 

  66. Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tissue Organ Cult 106:445–454. https://doi.org/10.1007/s11240-011-9942-6

    Article  CAS  Google Scholar 

  67. Berkov S, Ivanov I, Georgiev V et al (2014) Galanthamine biosynthesis in plant in vitro systems. Eng Life Sci 14:643–650. https://doi.org/10.1002/elsc.201300159

    Article  CAS  Google Scholar 

  68. Ivanov I, Georgiev V, Georgiev M et al (2011) Galanthamine and related alkaloids production by Leucojum aestivum L. shoot culture using a temporary immersion technology. Appl Biochem Biotechnol 163:268–277. https://doi.org/10.1007/s12010-010-9036-7

    Article  CAS  PubMed  Google Scholar 

  69. Schumann A, Berkov S, Claus D et al (2012) Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems. Appl Biochem Biotechnol 167:1907–1920. https://doi.org/10.1007/s12010-012-9743-3

    Article  CAS  PubMed  Google Scholar 

  70. Georgiev V, Ivanov I, Berkov S et al (2012) Galanthamine production by Leucojum aestivum l. shoot culture in a modified bubble column bioreactor with internal sections. Eng Life Sci 12:534–543. https://doi.org/10.1002/elsc.201100177

    Article  CAS  Google Scholar 

  71. Ivanov I, Georgiev V, Berkov S, Pavlov A (2012) Alkaloid patterns in Leucojum aestivum shoot culture cultivated at temporary immersion conditions. J Plant Physiol 169:206–211. https://doi.org/10.1016/j.jplph.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  72. Raj D, Kokotkiewicz A, Luczkiewicz M (2014) Production of therapeutically relevant indolizidine alkaloids in Securinega suffruticosa in vitro shoots maintained in liquid culture systems. Appl Biochem Biotechnol 175:1576–1587. https://doi.org/10.1007/s12010-014-1386-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Subroto MA, Hamill JD, Doran PM (1996) Development of shooty teratomas from several solanaceous plants: growth kinetics, stoichiometry and alkaloid production. J Biotechnol 45:45–57. https://doi.org/10.1016/0168-1656(95)00142-5

    Article  CAS  Google Scholar 

  74. Mahagamasekera MGP, Doran PM (1998) Intergeneric co-culture of genetically transformed organs for the production of scopolamine. Phytochemistry 47:17–25. https://doi.org/10.1016/S0031-9422(97)00551-7

    Article  CAS  Google Scholar 

  75. Subroto MA, Kwok KH, Hamill JD, Doran PM (1996) Coculture of genetically transformed roots and shoots for synthesis, translocation, and biotransformation of secondary metabolites. Biotechnol Bioeng 49:481–494. https://doi.org/10.1002/(SICI)1097-0290(19960305)49:5<481::AID-BIT1>3.0.CO;2-F

    Article  CAS  PubMed  Google Scholar 

  76. Verma SK, Das AK, Cingoz GS, Gurel E (2016) In vitro culture of Digitalis L. (Foxglove) and the production of cardenolides: an up-to-date review. Ind Crop Prod 94:20–51. https://doi.org/10.1016/j.indcrop.2016.08.031

    Article  CAS  Google Scholar 

  77. Kreis W (2017) The foxgloves (Digitalis) revisited. Planta Med 83:962–976. https://doi.org/10.1055/s-0043-111240

    Article  CAS  PubMed  Google Scholar 

  78. Weisse AB (2010) A fond farewell to the foxglove? The decline in the use of digitalis. J Card Fail 16:45–48. https://doi.org/10.1016/j.cardfail.2009.08.001

    Article  CAS  PubMed  Google Scholar 

  79. Pérez-Alonso N, Wilken D, Gerth A et al (2009) Cardiotonic glycosides from biomass of Digitalis purpurea L. cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 99:151–156. https://doi.org/10.1007/s11240-009-9587-x

    Article  CAS  Google Scholar 

  80. Pérez-Alonso N, Capote A, Gerth A, Jiménez E (2012) Increased cardenolides production by elicitation of Digitalis lanata shoots cultured in temporary immersion systems. Plant Cell Tissue Organ Cult 110:153–162. https://doi.org/10.1007/s11240-012-0139-4

    Article  CAS  Google Scholar 

  81. Luczkiewicz M, Kokotkiewicz A (2012) Elicitation and permeabilisation affect the accumulation and storage profile of phytoestrogens in high productive suspension cultures of Genista tinctoria. Acta Physiol Plant 34:1–16. https://doi.org/10.1007/s11738-011-0799-4

    Article  CAS  Google Scholar 

  82. Sharaf-Eldin M, Elkholy S (2009) Artemisinin production from different shoot culture systems of Artemisia annua L. Aust J Basic Appl Sci 3:2212–2216

    CAS  Google Scholar 

  83. Lorence A, Nessler CL (2004) Camptothecin, over four decades of surprising findings. Phytochemistry 65:2735–2749. https://doi.org/10.1016/j.phytochem.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  84. Piatczak E, Chmiel A, Wysokinska H (2005) Mist trickling bioreactor for Centaurium erythraea Rafn growth of shoots and production of secoiridoids. Biotechnol Lett 27:721–724. https://doi.org/10.1007/s10529-005-5189-9

    Article  CAS  PubMed  Google Scholar 

  85. Aberham A, Pieri V, Croom EM et al (2011) Analysis of iridoids, secoiridoids and xanthones in Centaurium erythraea, Frasera caroliniensis and Gentiana lutea using LC-MS and RP-HPLC. J Pharm Biomed Anal 54:517–525. https://doi.org/10.1016/j.jpba.2010.09.030

    Article  CAS  PubMed  Google Scholar 

  86. Joubert E, Otto F, Grüner S, Weinreich B (2003) Reversed-phase HPLC determination of mangiferin, isomangiferin and hesperidin in Cyclopia and the effect of harvesting date on the phenolic composition of C. genistoides. Eur Food Res Technol 216:270–273. https://doi.org/10.1007/s00217-002-0644-5

    Article  CAS  Google Scholar 

  87. Brugidou C, Jacques M, Cosson L, Ogerau T (1988) Growth and digoxin content in Digitalis lanata in controlled conditions and natural environment. Planta Med 54:262–265

    Article  CAS  PubMed  Google Scholar 

  88. Pellati F, Bruni R, Bellardi MG et al (2009) Optimization and validation of a high-performance liquid chromatography method for the analysis of cardiac glycosides in Digitalis lanata. J Chromatogr A 1216:3260–3269. https://doi.org/10.1016/j.chroma.2009.02.042

    Article  CAS  PubMed  Google Scholar 

  89. Fujii Y, Fujii H, Yamazaki M (1983) Separation and determination of cardiac glycosides in digitalis purpurea leaves by micro high-performance liquid chromatography. J Chromatogr A 258:147–153. https://doi.org/10.1016/S0021-9673(00)96406-9

    Article  CAS  Google Scholar 

  90. Fujii Y, Ikeda Y, Yamazaki M (1989) High-performance liquid chromatographic determination of secondary cardiac glycosides in digitalis purpurea leaves. J Chromatogr A 479:319–325. https://doi.org/10.1016/S0021-9673(01)83346-X

    Article  CAS  Google Scholar 

  91. Łuczkiewicz M, Głód D, Baczek T, Buciński A (2004) LC-DAD UV and LC-MS for the analysis of isoflavones and flavones from in vitro and in vivo biomass of Genista tinctoria L. Chromatographia 60:179–185. https://doi.org/10.1365/s10337-004-0357-y

    Article  CAS  Google Scholar 

  92. Kanthaliya B, Joshi A, Arora J (2019) Evaluation of isoflavonoid content in context to tuber size and seed biology study of Pueraria tuberosa (Roxb. ex. Willd.) DC: a vulnerable medicinal plant. Vegetos 32:247–253. https://doi.org/10.1007/s42535-019-00042-3

    Article  Google Scholar 

  93. Lee HJ, Kim CY (2010) Simultaneous determination of nine lignans using pressurized liquid extraction and HPLC-DAD in the fruits of Schisandra chinensis. Food Chem 120:1224–1228. https://doi.org/10.1016/j.foodchem.2009.11.068

    Article  CAS  Google Scholar 

  94. Sun D, Li Q, Li H et al (2014) Quantitative analysis of six lignans in fruits with different colours of Schisandra chinensis by HPLC. Nat Prod Res 28:581–585. https://doi.org/10.1080/14786419.2014.881365

    Article  CAS  PubMed  Google Scholar 

  95. Tani T, Katsuki T, Kubo M, Arichi S (1985) Histochemistry. VII. Flavones in Scutellariae radix. Chem Pharm Bull 33:4894–4900. https://doi.org/10.1248/cpb.33.4894

    Article  CAS  Google Scholar 

  96. Zgórka G, Hajnos A (2003) The application of solid-phase extraction and reversed phase high-performance liquid chromatography for simultaneous isolation and determination of plant flavonoids and phenolic acids. Chromatographia 57:77–80. https://doi.org/10.1007/BF02492087

    Article  Google Scholar 

  97. Raj D, Łuczkiewicz M (2008) Securinega suffruticosa. Fitoterapia 79:419–427. https://doi.org/10.1016/j.fitote.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  98. Bondarev N, Reshetnyak O, Nosov A (2003) Effects of nutrient medium composition on development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of steviol glycosides. Plant Sci 165:845–850. https://doi.org/10.1016/S0168-9452(03)00283-8

    Article  CAS  Google Scholar 

  99. Bondarev N, Reshetnyak O, Nosov A (2002) Features of development of Stevia rebaudiana shoots cultivated in the roller bioreactor and their production of Steviol glycosides. Planta Med 68:759–762. https://doi.org/10.1055/s-2002-33809

    Article  CAS  PubMed  Google Scholar 

  100. Goyal SK, Samsher, Goyal RK (2010) Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr 61:1–10. https://doi.org/10.3109/09637480903193049

    Article  CAS  PubMed  Google Scholar 

  101. Takayama S, Akita M (1994) The types of bioreactors used for shoots and embryos. Plant Cell Tissue Organ Cult 39:147–156. https://doi.org/10.1007/BF00033922

    Article  Google Scholar 

  102. Paek K-Y, Hahn EJ, Son S-H (2001) Application of bioreactors for large-scale micropropagation systems of plants. In Vitro Cell Dev Biol – Plant 37:149–157. https://doi.org/10.1007/s11627-001-0027-9

  103. Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult 69:215–231. https://doi.org/10.1023/A:1015668610465

    Article  Google Scholar 

  104. Towler MJ, Kim Y, Wyslouzil BE et al (2007) Design, development, and applications of mist bioreactors for micropropagation and hairy root culture. Plan Tissue Cult Eng 119–134. https://doi.org/10.1007/978-1-4020-3694-1_7

  105. Georgiev V, Ivanov I, Berkov S, Pavlov A (2014) Temporary immersion systems for Amaryllidaceae alkaloids biosynthesis by Pancratium maritimum L. shoot culture. J Plant Biochem Biotechnol 23:389–398. https://doi.org/10.1007/s13562-013-0222-x

    Article  CAS  Google Scholar 

  106. Valdiani A, Hansen OK, Nielsen UB et al (2019) Bioreactor-based advances in plant tissue and cell culture: challenges and prospects. Crit Rev Biotechnol 39:20–34. https://doi.org/10.1080/07388551.2018.1489778

    Article  CAS  Google Scholar 

  107. Kawamura M, Shigeoka T, Akita M, Kabayashi Y (1996) Newly developed apparatus for inoculating plant organs into large-scale fermentor. J Ferment Bioeng 82:618–619. https://doi.org/10.1016/S0922-338X(97)81266-4

  108. Steward FC, Caplin SM, Millar FK (1952) Investigations on growth and metabolism of plant cells. Ann Bot 16:57–79. https://doi.org/10.1093/oxfordjournals.aob.a083303

    Article  CAS  Google Scholar 

  109. Adelberg J, Fári M (2010) Applied physiology and practical bioreactors for plant propagation. Propag Ornam Plants 10:205–219

    Google Scholar 

  110. Hagimori M, Mikami Y, Matsumoto T (1984) Jar fermenter culture of shoot-forming cultures of Digitalis purpurea L. using a revised medium. Agric Biol Chem 48:965–970. https://doi.org/10.1271/bbb1961.48.965

    Article  CAS  Google Scholar 

  111. Hvoslef-Eide AK, Preil W (2005) Liquid Culture Systems for in vitro Plant Propagation. Springer Netherlands, Dordrecht

    Google Scholar 

  112. Sager JC, McFarlane JC (1997) Radiation. In: Langhans RW, Tibbitts TW (eds) Growth chamber handbook. Agriculture and Home Economics Experiment Station, Iowa State University, Ames, pp 1–30

    Google Scholar 

  113. Akita M, Shigeoka T, Koizumi Y, Michio K (1994) Mass propagation of shoots of Stevia rebaudiana using a large scale bioreactor. Plant Cell Rep 13:180–183. https://doi.org/10.1007/BF00239888

  114. Ducos JP, Terrier B, Courtois D (2009) Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture. In: Eibl R, Eibl D (eds) Disposable Bioreactors: Advances in Biochemical Engineering/Biotechnology, vol. 115. Springer, Berlin, Heidelberg, pp 89–115. https://doi.org/10.1007/10_2008_28

  115. Jeong JH, Jung SJ, Murthy HN et al (2005) Production of eleutherosides in in vitro regenerated embryos and plantlets of Eleutherococcus chiisanensis. Biotechnol Lett 27:701–704. https://doi.org/10.1007/s10529-005-4693-2

    Article  CAS  PubMed  Google Scholar 

  116. Fulzele DP, Heble M, Rao P (1995) Production of terpenoid from Artemisia annua L. plantlet cultures in bioreactor. J Biotechnol 40:139–143. https://doi.org/10.1016/0168-1656(95)00034-N

    Article  CAS  Google Scholar 

  117. Karppinen K, Hohtola A, Tolonen A et al (2006) Comparison of growth and secondary metabolite accumulation in cultures of compact callus aggregates and shoots of Hypericum perforatum L. in shake flasks and in a bubble column bioreactor. Acta Hortic 725:605–612. https://doi.org/10.17660/ActaHortic.2006.725.84

  118. Wu RZ, Baque MA, Paek KY (2010) Establishment of a large-scale micropropagation system for Anoectochilus formosanus in bioreactors. Acta Hortic 878:167–174. https://doi.org/10.17660/ActaHortic.2010.878.18

  119. Shohael AM, Chakrabarty D, Yu KW et al (2005) Application of bioreactor system for large-scale production of Eleutherococcus sessiliflorus somatic embryos in an air-lift bioreactor and production of eleutherosides. J Biotechnol 120:228–236. https://doi.org/10.1016/j.jbiotec.2005.06.010

    Article  CAS  PubMed  Google Scholar 

  120. Ducos JP, Terrier B, Courtois D, Pétiard V (2008) Improvement of plastic-based disposable bioreactors for plant science needs. Phytochem Rev 7:607–613. https://doi.org/10.1007/s11101-008-9089-1

    Article  CAS  Google Scholar 

  121. Watt MP (2012) The status of temporary immersion system (TIS) technology for plant micropropagation. Afr J Biotechnol 11:14025–14035. https://doi.org/10.5897/AJB12.1693

  122. Welander M, Persson J, Asp H, Zhu LH (2014) Evaluation of a new vessel system based on temporary immersion system for micropropagation. Sci Hortic (Amsterdam) 179:227–232. https://doi.org/10.1016/j.scienta.2014.09.035

    Article  CAS  Google Scholar 

  123. Diwan R, Malpathak N (2008) Novel technique for scaling up of micropropagated Ruta graveolens shoots using liquid culture systems: a step towards commercialization. New Biotechnol 25:85–91. https://doi.org/10.1016/j.nbt.2008.02.002

    Article  CAS  Google Scholar 

  124. Cortes-Morales JA, López-Laredo AR, Zamilpa A et al (2018) Morphogenesis and secondary metabolites production in the medicinal plant Castilleja tenuiflora benth. under nitrogen deficiency and starvation stress in a temporary immersion system. Rev Mex Ing Quim 17:229–242. https://doi.org/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Cortes

    Article  CAS  Google Scholar 

  125. López CQ, Corral P, Lorrain-Lorrette B et al (2018) Use of a temporary immersion bioreactor system for the sustainable production of thapsigargin in shoot cultures of Thapsia garganica. Plant Methods 14:1–17. https://doi.org/10.1186/s13007-018-0346-z

    Article  CAS  Google Scholar 

  126. Radović M, Šiler B, Nestorović Živković J et al (2013) Bioreactor cultivation of Zeltnera beyrichii (Torr. & A. Gray) Mans.: a novel source of biologically active compounds. Rec Nat Prod 7:266–280

    Google Scholar 

  127. Pramita AD, Kristanti AN, Sugiharto KAN et al (2018) Production of biomass and flavonoid of Gynura procumbens (Lour.) Merr shoots culture in temporary immersion system. J Genet Eng Biotechnol 16:639–643. https://doi.org/10.1016/j.jgeb.2018.05.007

    Article  PubMed  PubMed Central  Google Scholar 

  128. Sequeida Á, Tapia E, Ortega M et al (2012) Production of phenolic metabolites by Deschampsia antarctica shoots using UV-B treatments during cultivation in a photobioreactor. Electron J Biotechnol 15. https://doi.org/10.2225/vol15-issue4-fulltext-7

  129. Tapia A, Cheel J, Theoduloz C et al (2007) Free radical scavengers from Cymbopogon citratus (DC.) stapf plants cultivated in bioreactors by the temporary immersion (TIS) principle. Z Naturforsch – Sect C J Biosci 62:447–457. https://doi.org/10.1515/znc-2007-5-620

    Article  CAS  Google Scholar 

  130. Liu CZ, Wang YC, Zhao B et al (1999) Development of a nutrient mist bioreactor for growth of hairy roots. Vitr Cell Dev Biol – Plant 35:271–274. https://doi.org/10.1007/s11627-999-0091-0

    Article  Google Scholar 

  131. Grzegorczyk I, Wysokińska H (2010) Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor. Acta Soc Bot Pol 79:7–10. https://doi.org/10.5586/asbp.2010.001

  132. Grzegorczyk-Karolak I, Rytczak P, Bielecki S, Wysokińska H (2017) The influence of liquid systems for shoot multiplication, secondary metabolite production and plant regeneration of Scutellaria alpina. Plant Cell Tissue Organ Cult 128:479–486. https://doi.org/10.1007/s11240-016-1126-y

    Article  CAS  Google Scholar 

  133. Jaremicz Z, Luczkiewicz M, Kokotkiewicz A et al (2014) Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnol Lett 36:843–853. https://doi.org/10.1007/s10529-013-1426-9

    Article  CAS  PubMed  Google Scholar 

  134. Fei L, Weathers PJ (2014) From cells to embryos to rooted plantlets in a mist bioreactor. Plant Cell Tissue Organ Cult 116:37–46. https://doi.org/10.1007/s11240-013-0380-5

    Article  CAS  Google Scholar 

  135. Fei L, Weathers P (2016) From leaf explants to hanging rooted plantlets in a mist reactor. Plant Cell Tissue Organ Cult 124:265–274. https://doi.org/10.1007/s11240-015-0890-4

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the project POWR.03.02.00-00-I014/17-00 co-financed by the European Union through the European Social Fund under the Operational Programme Knowledge Education Development 2014–2020

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Luczkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Krol, A., Kokotkiewicz, A., Szopa, A., Ekiert, H., Luczkiewicz, M. (2020). Bioreactor-Grown Shoot Cultures for the Secondary Metabolite Production. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_34-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_34-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics