Skip to main content

Production of Cholinesterase-Inhibiting Compounds in In Vitro Cultures of Club Mosses

  • Living reference work entry
  • First Online:
Book cover Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

This review provides a comprehensive overview of the cholinesterase-inhibiting compound production in in vitro culture of club mosses (Lycopodiaceae sensu lato). Some hallmarks in a rich history of studies on club mosses, their complex systematics and phylogeny, and secondary metabolites with potential medicinal uses are presented. The review summarizes the published literature, from historical times to the present, including reports on the latest developments in the biosynthesis of alkaloids using different methods. Currently, over 30 compounds which are AChE inhibitors are being assessed in various phases of preclinical and clinical trials, and a few have been approved for use. Huperzine A (HupA, selagine), an alkaloid isolated from some club mosses, has been chosen as a promising drug candidate for Alzheimer’s disease. Although the procedure for the total HupA synthesis has been developed, the pharmaceutical industry uses mainly Huperzia serrata sporophytes collected in its natural habitat. Currently, a total of approximately 350 different Lycopodium alkaloids are known, and some of them demonstrate very strong acetylcholinesterase inhibitory or butyrylcholinesterase-inhibiting activity. Since the 1950s, a number of approaches to Lycopod regeneration have been described, and some appeared to be potentially useful for large-scale propagation of the plant material, including the production of secondary metabolites. Some other established cultures which partially succeeded used Lycopod gametophytes or sporophytes. Some of those studies dealt specifically with the biosynthesis of alkaloids and obtaining the biomass for their isolation. These values clearly demonstrate that the highest HupA content in the plant material from in vitro tissue cultures exceeds by approximately 26-fold or by 13-fold the mean HupA level in the whole plant of H. serrata or by 10-fold the highest HupA content in the H. serrata sporophytes with the most efficient biosynthesis of the alkaloid. Importantly, the in vitro methods successfully shorten the life cycle of the plants which under natural conditions can take many years to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

½MS:

Murashige and Skoog medium with half strength mineral salt content and full strength of organic component

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

AD:

Alzheimer’s disease

BuChE:

Butyrylcholinesterase

CNS:

Central nervous system

HupA:

Huperzine A (selagine)

HupB:

Huperzine B

s.l. :

Sensu lato

s.s. :

Sensu stricto

References

  1. Ma X, Tan C, Zhu D, Gang DR, Xiao P (2007) Huperzine A from Huperzia species – an ethnopharmacological review. J Ethnopharmacol 113:15–34. https://doi.org/10.1016/j.jep.2007.05.030

    Article  CAS  PubMed  Google Scholar 

  2. Liu JS, Zhu YL, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF (1986) The structures of Huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Can J Chem 64:837–883. https://doi.org/10.1139/v86-137

    Article  CAS  Google Scholar 

  3. Liu JS, Yu CM, Zhou YZ, Han YY, Wu FW, Qi BF, Zhu YL (1986) Study on the chemistry of Huperzine-A and Huperzine-B. Acta Chim Sin 44:1035–1040

    CAS  Google Scholar 

  4. Ma X, Gang DR (2004) The Lycopodium alkaloids. Nat Prod Rep 21:752–772. https://doi.org/10.1039/b409720n

    Article  CAS  PubMed  Google Scholar 

  5. Frisoni GB (2001) Treatment of Alzheimer’s disease with acetylcholinesterase inhibitors: bridging the gap between evidence and practice. J Neurol 248:551–557. https://doi.org/10.1007/s004150170131

    Article  CAS  PubMed  Google Scholar 

  6. Law A, Gauthier S, Quirion R (2001) Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Rev 35(1):73–96. https://doi.org/10.1016/S0165-0173(00)00051-5

    Article  CAS  PubMed  Google Scholar 

  7. Carlson A (2001) A paradigm shift in brain research. Science 294:1021–1024. https://doi.org/10.1126/science.1066969

    Article  Google Scholar 

  8. Wszelaki N (2009) Plants as a source of acetylcholinesterase and butyrylcholinesterase inhibitors. Postępy Fitoter 1:24–38

    Google Scholar 

  9. Qiang BC, Wang M, Zhou ZF, Chen K, Zhou RR, Chen GS (1995) Pharmacokinetics of tablet Huperzine A in six volunteers. Acta Pharmacol Sin 16(5):396–398

    Google Scholar 

  10. Xu SS, Gao ZY, Weng Z, Du ZM, Xu WA, Yang JS, Zhang ML, Tong ZH, Fang YS, Chai XS (1995) Efficacy of tablet Huperzine A on memory, cognition, and behavior in Alzheimer’s disease. Acta Pharmacol Sin 16(5):391–395

    CAS  Google Scholar 

  11. Cheng DH, Ren H, Tang XC (1996) Huperzine A, a novel promising acetylcholinesterase inhibitor. Neuroreport 8:97–101. https://doi.org/10.1097/00001756-199612200-00020

    Article  CAS  PubMed  Google Scholar 

  12. Ferreira A, Rodrigues M, Fortuna A, Falcão A, Alves G (2016) Huperzine A from Huperzia serrata: a review of its sources, chemistry, pharmacology and toxicology. Phytochem Rev 15(1):51–85. https://doi.org/10.1007/s11101-014-9384-y

    Article  CAS  Google Scholar 

  13. Wang R, Zhang HY, Tang XC (2001) Huperzine A attenuates cognitive dysfunction and neuronal degeneration by β-amyloid protein-(1-40) in rat. Eur J Pharmacol 421:149–156. https://doi.org/10.1016/S0014-2999(01)01030-5

    Article  CAS  PubMed  Google Scholar 

  14. Xiao XQ, Wang R, Han YF, Tang XC (2000) Protective effects of Huperzine A on beta-amyloid (25–35) induced oxidative injury in rat pheochromocytoma cells. Neurosci Lett 286:155–158. https://doi.org/10.1016/S0304-3940(00)01088-0

    Article  CAS  PubMed  Google Scholar 

  15. Tang LL, Wang R, Tang XC (2005) Huperzine A protects SHSY5Y neuroblastoma cells against oxidative stress damage via nerve growth factor production. Eur J Pharmacol 519:9–15. https://doi.org/10.1016/j.ejphar.2005.06.026

    Article  CAS  PubMed  Google Scholar 

  16. Chiu HF, Zhang M (2000) Dementia research in China. Int J Geriatr Psychiatry 15:947–953. https://doi.org/10.1002/1099-1166(200010)15:10%3C947::AID-GPS222%3E3.3.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  17. Wang R, Yan H, Tang XC (2006) Progress in studies of Huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol Sin 27:1–26. https://doi.org/10.1111/j.1745-7254.2006.00255.x

    Article  CAS  PubMed  Google Scholar 

  18. Ma X, Tan C, Zhu D, Gang D (2006) A survey of potential Huperzine A natural resources in China: the Huperziaceae. J Ethnopharmacol 104:54–67. https://doi.org/10.1016/j.jep.2005.08.042

    Article  CAS  PubMed  Google Scholar 

  19. Wu Q-Q, Gu Y (2006) Quantification of Huperzine A in Huperzia serrata by HPLC-UV and identification of the major constituents in its alkaloid extracts by HPLC-DAD-MS-MS. J Pharm Biomed Anal 40:993–998. https://doi.org/10.1016/j.jpba.2005.07.047

    Article  CAS  PubMed  Google Scholar 

  20. Skog JE, Hill CR (1992) The mesozoic herbaceous lycopsid. Ann Mo Bot Gard 79:648–675. https://doi.org/10.2307/2399758

    Article  Google Scholar 

  21. Wikström N, Kenrick P (2001) Evolution of Lycopodiaceae (Lycopsida): estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Mol Phylogenet Evol 19(2):177–186. https://doi.org/10.1006/mpev.2001.0936

    Article  CAS  PubMed  Google Scholar 

  22. Øllgaard B (1987) A revised classification of the Lycopodiaceae s. lat. Opera Bot 92:153–178

    Google Scholar 

  23. Wagner WH Jr, Beitel JM (1992) Generic classification of modern North American Lycopodiaceae. Ann Mo Bot Gard 79:676–686. https://doi.org/10.2307/2399759

    Article  Google Scholar 

  24. Schuettpelz E (2016) A community – derived classification for extant lycophytes and ferns. J Syst Evol 54(6):563–603. https://doi.org/10.1111/jse.12229

    Article  Google Scholar 

  25. Rothmaler W (1944) Pteridophyten-Studien I. Feddes Repert 54:55–82. https://doi.org/10.1002/fedr.19440540106

    Article  Google Scholar 

  26. Rothmaler W (1962) Über eininge Diphasium – Arten (Lycopodiaceae). Feddes Repert 66:234–236

    Google Scholar 

  27. Wikström N, Kenrick P (1997) Phylogeny of Lycopodiaceae (Lycopsida) and the relationship of Phylloglossum drummondii Kunze based on rbcL sequences. Int J Plant Sci 158(6): 826–871. https://doi.org/10.1086/297501

    Article  Google Scholar 

  28. Wikström N, Kenrick P, Chase M (1999) Epiphytism and terrestrialization in tropical Huperzia (Lycopodiaceae). Plant Syst Evol 218:221–243. https://doi.org/10.1007/BF01089229

    Article  Google Scholar 

  29. Wikström N, Kenrick P (2000) Phylogeny of epiphytic Huperzia (Lycopodiaceae): paleotropical and neotropical clades corroborated by rbcL sequences. Nord J Bot 20: 165–171. https://doi.org/10.1111/j.1756-1051.2000.tb01561.x

    Article  Google Scholar 

  30. Wikström N, Kenrick P (2000) Relationships of Lycopodium and Lycopodiella based on combined on plastid rbcL gene and trnL intron sequence data. Syst Bot 25:459–510. https://doi.org/10.2307/2666692

    Article  Google Scholar 

  31. Yatsentyuk SP, Valiejo-Roman KM, Samigullin TH, Wikström N, Troitsky AV (2001) Evolution of Lycopodiaceae inferred from spacer sequencing of chloroplast rRNA genes. Russ J Genet 37(9):1068–1073. https://doi.org/10.1023/A:1011969716528

    Article  CAS  Google Scholar 

  32. Szypuła WJ (2013) O filogenezie i systematyce rodziny widłakowatych Lycopodiaceae sensu lato – przegląd piśmiennictwa (phylogeny and systematics of the family Lycopodiaceae – a review). Acta Bot Siles 9:25–56

    Google Scholar 

  33. Lemery N (1716) Dictionnaire Universel des drogues simoles. Aux Dépens de la compagnie, Amsterdam, p 235

    Google Scholar 

  34. Kosteletzky BF (1831) Allgemeine medizinisch-pharmazeutische Flora, vol 1. Borrosch & André, Prague

    Google Scholar 

  35. Muszyński J (1946) Widłaki i ich zastosowanie w lecznictwie. Farm Pol 11:345–352

    Google Scholar 

  36. Dragensdorff G (1898) Die Heipflanzen der verschiedenen Völker und Zeiten. Ihre Anwendung wesentlichen Bestandtheile und Geschichte. Ein Handbuch für Arzte, Apotheker, Botaniker und Drogiste. Verlag von Ferdinand Enke, Stuttgardt

    Google Scholar 

  37. Hegi G (1906) Illustrierte Flora von Mittel-Europa mit besonderer Berücksichtigung von Deutschland, Oesterreich und der Schweiz zum Gebrauche in den Schulen und zum Selbstunterricht. Verschiedene Herausgeber und Auflagen. Band I. Pteridophyta, Gymnospermae und Monocotyledones. Verlag von J. F. Lehmann, Mȕnchen, pp 63–69

    Google Scholar 

  38. Muszyński J (1946) Widłaki i ich zastosowanie w lecznictwie. Farm Pol 10:309–315

    Google Scholar 

  39. Hegnauer R (1962) Chemotaxonomie der Pflanzen, vol 1. Birkhäuser Verlag, Basel/Stuttgart

    Book  Google Scholar 

  40. Hegnauer R (1986) Chemotaxonomie der Pflanzen, vol VII. Birkhäuser Verlag, Basel/Stuttgart

    Book  Google Scholar 

  41. Böedeker K (1881) Lycopodin, das erste Alkaloïd der Gefäfskryptogamen. Liebig’s Ann Chem 208:36–367. https://doi.org/10.1002/jlac.18812080308

    Article  Google Scholar 

  42. Muszyński J (1955) Alkaloidy i glikozydy flawonowe widłaków. Acta Soc Bot Pol 24(2): 237–244. https://doi.org/10.5586/asbp.1955.014

    Article  Google Scholar 

  43. Capdeville Ch (1886) Etudes botaniques, chimiques et physiologiques sur pillijan (Lycopodium saururus Lam.). Dissertation, Paris

    Google Scholar 

  44. Arata PN, Canzoneri F (1892) Contributo allo studio del Pillijan (Lycopodium saururus Lam.). Gazz Chim Ital 22(1):146–157

    Google Scholar 

  45. Muszyński J (1934) Alkaloidy europejskich gatunków Lycopodium. Acta Soc Bot Pol 11:277–228. https://doi.org/10.5586/asbp.1934.016

    Article  Google Scholar 

  46. Muszyński J (1948) The alkaloids of clubmosses. Q J Pharm Pharmacol 21:34

    PubMed  Google Scholar 

  47. Rodewald WJ, Grynkiewicz G (1968) Alkaloidy rodzaju Lycopodium. VI. Alkaloidy Lycopodium selago L. Roczniki Chemii 42:465–475

    CAS  Google Scholar 

  48. Valenta Z, Yoshimura H, Rogers EF, Ternbach M, Wiesner K (1960) The structure of selagine. Tetrahedron Lett 10:26–33. https://doi.org/10.1016/S0040-4039(01)99300-1

    Article  Google Scholar 

  49. Yoshimura H, Valenta Z, Wiesner K (1960) A rigorous proof of the selagine structure. Tetrahedron Lett 12:14–17. https://doi.org/10.1016/S0040-4039(01)99306-2

    Article  Google Scholar 

  50. Ayer WA, Kasitu GC (1989) Some new Lycopodium alkaloids. Can J Chem 67:1077–1086. https://doi.org/10.1139/v89-163

    Article  CAS  Google Scholar 

  51. Achmatowicz O, Uziębło W (1938) Alkaloidy widłaka babimoru (Lycopodium clavatum). Rocz Chemii 18:88–95

    CAS  Google Scholar 

  52. Achmatowicz O, Rodewald W (1955) Alkaloidy rodzaju Lycopodium II. Lycopodium annotinum L. Rocz Chemii 29(509):508–530

    Google Scholar 

  53. Achmatowicz O, Rodewald W (1955) The alkaloids of Lycopodium selago. Bull Acad Pol Sci (Classe III) 3:553–555

    CAS  Google Scholar 

  54. Harrison WA, MacLean DB (1960) Structure of lycopodine. Chem Ind (London) 261–262

    Google Scholar 

  55. Manske RHF, Marion L (1943) The alkaloids of Lycopodium species. III. Lycopodium annotinum L. Can J Res B 21:92–96. https://doi.org/10.1139/cjr43b-011

    Article  Google Scholar 

  56. Manske RHF, Marion L (1944) The alkaloids of Lycopodium species. V. Lycopodium obscurum L. Can J Res B 22(3):53–55. https://doi.org/10.1139/cjr44b-007

    Article  Google Scholar 

  57. Manske RHF, Marion L (1946) The alkaloids of Lycopodium species. VII. Lycopodium lucidulum Michx. (Urostachys lucidulum Herter). Can J Res B 24(2):57–62. https://doi.org/10.1139/cjr46b-009

    Article  CAS  Google Scholar 

  58. Manske RHF, Marion L (1947) The alkaloids of Lycopodium species. IX. Lycopodium Annotinum Var. Acrifolium, Fern. and the structure of Annotinine. J Am Chem Soc 69:2126–2129. https://doi.org/10.1021/ja01201a019

    Article  CAS  PubMed  Google Scholar 

  59. Marion L, Manske RHF (1944) The alkaloids of Lycopodium species. IV. Lycopodium tristachyum Pursh. Can J Res B 22(1):1–4. https://doi.org/10.1139/cjr44b-001

    Article  Google Scholar 

  60. Marion L, Manske RHF (1944) The alkaloids of Lycopodium species. VI. Lycopodium clavatum L. Can J Res B 22(5):137–139. https://doi.org/10.1139/cjr44b-017

    Article  Google Scholar 

  61. Moore BP, Marion L (1953) α-Obscurines and β-obscurines: structure studies. Can J Chem 31:952–957

    Article  CAS  Google Scholar 

  62. Bertho A, Stoll A (1952) Bärlapp – Alkaloide, I. Mitteil.: Zur Kenntnis der Alkaloide aus Lycopodium annotinum L. Chem Ber 85(7–8):663–685. https://doi.org/10.1002/cber.19520850703

    Article  CAS  Google Scholar 

  63. Ayer WA, Iverach GG (1960) The structures of α- and β- obscurine. Tetrahedron Lett 10:19–25. https://doi.org/10.1016/S0040-4039(01)99299-8

    Article  Google Scholar 

  64. Ayer WA, Berezowsky JA, Iverach GG (1962) Lycopodium alkaloids – II The obscurines. Tetrahedron 18:567–573. https://doi.org/10.1016/S0040-4020(01)92707-3

    Article  CAS  Google Scholar 

  65. Ayer WA, Iverach GG (1962) The structure and stereochemistry of lycodoline (Lycopodium alkaloids L.8). Tetrahedron Lett 3:87–92. https://doi.org/10.1016/S0040-4039(00)71105-1

    Article  Google Scholar 

  66. Ayer WA, Iverach GG (1960) The structure of lycodine. Can J Chem 38:1823–1826. https://doi.org/10.1139/v60-247

    Article  CAS  Google Scholar 

  67. MacLean D (1963) The Lycopodium alkaloids XIII. Mass spectra of representative alkaloids. Can J Chem 41:2654–2670. https://doi.org/10.1139/v63-387

    Article  CAS  Google Scholar 

  68. Ayer WA, Berezowsky JA, Law DA (1962) Lycopodium alkaloids V. The bromination of lycopodine and the structure of alkaloid L. 20. Can J Chem 41:649–657. https://doi.org/10.1139/v63-092

    Article  Google Scholar 

  69. Ayer WA, Trifonov LS (1994) Lycopodium alkaloids. In: The alkaloids, vol 45. Academic, San Diego, pp 233–266

    Google Scholar 

  70. Achmatowicz O, Werner-Zamojska F (1958) Notatka o kwasach organicznych ziela Lycopodium annotinum, L. selago i L. clavatum. Rocz Chemii 32:1127–1130

    CAS  Google Scholar 

  71. Voirin B, Jay M (1978) Contribution of flavone biochemistry to systematics of the Lycopodiales order Lycopodium genus. Biochem Syst Ecol 6:95–97

    Article  CAS  Google Scholar 

  72. Markham KM, Moore NA (1980) Comparative flavonoids glycoside biochemistry as a chemotaxonomic tool in the subdivision of the classical ‘genus’ Lycopodium. Biochem Syst Ecol 8(1):17–20. https://doi.org/10.1016/0305-1978(80)90020-4

    Article  CAS  Google Scholar 

  73. Inubushi Y, Sano T, Tsuda Y (1964) Serratenediol: a new skeletal triterpenoid containing a seven member ring. Tetrahedron Lett 5(21):1303–1310. https://doi.org/10.1016/S0040-4039(00)90472-6

    Article  Google Scholar 

  74. Hirasawa Y, Kobayashi J, Morita H (2006) Lycoperine A, a novel C27N3-type pentacyclic alkaloid from Lycopodium hamiltonii, inhibiting acety. Org Lett 8(1):123–126. https://doi.org/10.1021/ol052760q

    Article  CAS  PubMed  Google Scholar 

  75. Choo CY, Hirasawa Y, Karimata C, Koyama K, Sekiguchi M, Kobayashi J, Morita H (2007) Carinatumins A-C, new alkaloids from Lycopodium carinatum inhibiting acetylcholinesterase. Bioorg Med Chem 15(4):1703–1707. https://doi.org/10.1016/j.bmc.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  76. Sun Y, Yan J, Meng H, He CL, Yi P, Qiao Y, Qiu MH (2008) A new alkaloid from Lycopodium japonicum THUNB. Helv Chim Acta 91:2107–2109. https://doi.org/10.1002/hlca.200890225

    Article  CAS  Google Scholar 

  77. Pei G, He GX, Du FL, Jiang DS (2008) A novel alkaloid from Huperzia crispate. J Asian Nat Prod Res 10:931–932. https://doi.org/10.1080/10286020802181448?scroll=top

    Article  CAS  PubMed  Google Scholar 

  78. Halldorsdottir ES, Olafsdottir ES, Jaroszewski JW (2008) Alkaloid content of the Icelandic club moss Lycopodium annotinum – acetylcholinesterase inhibitory activity in vitro. Planta Med 74:1043–1043. https://doi.org/10.1055/s-0028-1084398

    Article  Google Scholar 

  79. Goodger JQD, Whincup AL, Field AR, Holtum JAM, Woodrow IE (2008) Variation in Huperzine A and B in Australasian Huperzia species. Biochem Syst Ecol 36:612–618. https://doi.org/10.1016/j.bse.2008.05.006

    Article  CAS  Google Scholar 

  80. Gao WY, Li YM, Jiang SH, Zhu DY (2008) Two new nitrone alkaloids from Huperzia serrata. Helv Chim Acta 91:1031–1035. https://doi.org/10.1002/hlca.200890110

    Article  CAS  Google Scholar 

  81. Katakawa K, Kogure N, Kitajima M, Takayama H (2009) A new Lycopodium alkaloid, lycoposerramine-R, with a novel skeleton and three new fawcettimine-related alkaloids from Lycopodium serratum. Helv Chim Acta 92:445–452. https://doi.org/10.1021/ol0167762

    Article  CAS  Google Scholar 

  82. Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lycopladines F and G, new C16N2-type alkaloids with an additional C4N unit from Lycopodium complanatum. Tetrahedron Lett 50:4221–4224. https://doi.org/10.1016/j.tetlet.2009.04.139

    Article  CAS  Google Scholar 

  83. Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lycopladine H, a novel alkaloid with fused-tetracyclic skeleton from Lycopodium complanatum. Tetrahedron Lett 50:6534–6536. https://doi.org/10.1016/j.tetlet.2009.09.035

    Article  CAS  Google Scholar 

  84. Ishiuchi K, Kodama S, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Lannotinidines H-J, new Lycopodium alkaloids from Lycopodium annotinum. Chem Pharm Bull 57:877–881. https://doi.org/10.1248/cpb.57.877

    Article  CAS  PubMed  Google Scholar 

  85. Hirasawa Y, Tanaka T, Koyama K, Morita H (2009) Lycochinines A-C, novel C27N3 alkaloids from Lycopodium chinense. Tetrahedron Lett 50:4816–4819. https://doi.org/10.1016/j.tetlet.2009.05.072

    Article  CAS  Google Scholar 

  86. Hirasawa Y, Kobayashi J, Morita H (2009) The Lycopodium alkaloids. Heterocycles 77:679–729

    Article  CAS  Google Scholar 

  87. He J, Chen XQ, Li MM, Zhao Y, Xu G, Cheng X, Peng LY, Xie MJ, Zheng YT, Wang YP, Zhao QS (2009) Lycojapodine A, a novel alkaloid from Lycopodium japonicum. Org Lett 11:1397–1400. https://doi.org/10.1021/ol900079t

    Article  CAS  PubMed  Google Scholar 

  88. Zhao FW, Sun QY, Yang FM, Hu GW, Luo JF, Tang GH, Wang YH, Long CL (2010) Palhinine A, a novel alkaloid from Palhinhaea cernua. Org Lett 12:3922–3925. https://doi.org/10.1021/ol101602n

    Article  CAS  Google Scholar 

  89. Xie XY, Jiang JH, Liu Y, Min K, Xue YM, Jing B, Zhang Y, Chen YG (2010) A new Lycopodine alkaloid from Phlegmariurus yunnanensis Ching. Helv Chim Acta 93: 1381–1384. https://doi.org/10.1002/hlca.200900412

    Article  CAS  Google Scholar 

  90. Halldorsdottir ES, Jaroszewski JW, Olafsdottir ES (2010) Acetylcholinesterase inhibitory activity of lycopodane-type alkaloids from the Icelandic Lycopodium annotinum ssp alpestre. Phytochemistry 71:149–157. https://doi.org/10.1016/j.phytochem.2009.10.018

    Article  CAS  PubMed  Google Scholar 

  91. Katakawa K, Mito H, Kogure N, Kitajima M, Wongseripipatana S, Arisawa M, Takayama H (2011) Ten new fawcettimine-related alkaloids from three species of Lycopodium. Tetrahedron 67:6561–6567. https://doi.org/10.1016/j.tet.2011.05.107

    Article  CAS  Google Scholar 

  92. Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Mori K, Obara Y, Nakahata N, Kobayashi J (2011) Lyconadins D and E, and complanadine E, new Lycopodium alkaloids from Lycopodium complanatum. Bioorg Med Chem 19:749–753. https://doi.org/10.1016/j.bmc.2010.12.025

    Article  CAS  PubMed  Google Scholar 

  93. Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Kobayashi J (2011) Lyconadins C and F, new Lycopodium alkaloids from Lycopodium complanatum. Tetrahedron Lett 52:289–292. https://doi.org/10.1016/j.tetlet.2010.11.024

    Article  CAS  Google Scholar 

  94. Hirasawa Y, Astulla A, Shiro M, Morita H (2011) Lycotetrastine A, a novel hexacyclic alkaloid from Huperzia tetrasticha. Tetrahedron Lett 52:4126–4128. https://doi.org/10.1016/j.tetlet.2011.05.133

    Article  CAS  Google Scholar 

  95. Hirasawa Y, Matsuya R, Shaari K, Lajis NH, Uchiyama N, Goda Y, Morita H (2012) Lycobelines A-C, novel C16N2-type Lycopodium alkaloids from Huperzia goebelii. Tetrahedron Lett 53:3971–3973. https://doi.org/10.1016/j.tetlet.2012.05.080

    Article  CAS  Google Scholar 

  96. Dong LB, Yang J, He J, Luo HR, Wu XD, Deng X, Peng LY, Cheng X, Zhao QS (2012) Lycopalhine A, a novel sterically congested Lycopodium alkaloid with an unprecedented skeleton from Palhinhaea cernua. Chem Commun 48:9038–9040. https://doi.org/10.1039/c2cc34676a

    Article  CAS  Google Scholar 

  97. Wang XJ, Zhang GJ, Zhuang PY, Zhang Y, Yu SS, Bao XQ, Zhang D, Yuan YH, Chen NH, Ma SG, Qu J, Li Y (2012) Lycojaponicumins A-C, three alkaloids with an unprecedented skeleton from Lycopodium japonicum. Org Lett 14:2614–2617. https://doi.org/10.1021/ol3009478

    Article  CAS  PubMed  Google Scholar 

  98. Wang X, Liu YB, Li L, Yu SS, Lv HN, Ma SG, Bao XQ, Zhang D, Qu J, Li Y (2012) Lycojaponicumins D and E: two new alkaloids from Lycopodium japonicum. Org Lett 14:5688–5691. https://doi.org/10.1080/10286020.2018.1427075

    Article  CAS  PubMed  Google Scholar 

  99. Shan WG, Ren FY, Ying YM, Tong CP, Zhan ZJ (2012) A new lycopodine alkaloid from Huperzia serrata. J Chem Res 369(1):15–16. https://doi.org/10.3184/174751912X13249872110014

    Article  CAS  Google Scholar 

  100. Sahidan N, Choo CY, Latiff A, Jaman R (2012) Variations of Huperzine A content in Lycopodiaceae species from tropics. Chin J Nat Med 10:125–128. https://doi.org/10.3724/SP.J.1009.2012.00125

    Article  CAS  Google Scholar 

  101. Morel S, Kerzaon I, Roumy V, Azaroual N, Sahpaz S, Joseph H, Bailleul F, Hennebelle T (2012) A new cernuane-type alkaloid from Lycopodium cernuum. Biochem Syst Ecol 45:188–190. https://doi.org/10.1016/j.bse.2012.07.026

    Article  CAS  Google Scholar 

  102. Li B, Zhang WD, He YR, Lu L, Kong DY, Shen YH (2012) New alkaloids from Lycopodium japonicum. Chem Pharm Bull 60:1448–1452. https://doi.org/10.1248/cpb.c12-00201

    Article  CAS  PubMed  Google Scholar 

  103. Konrath EL, Neves BM, Passos CD, Lunardi PS, Ortega MG, Cabrera JL, Goncalves CA, Henriques AT (2012) Huperzia quadrifariata and Huperzia reflexa alkaloids inhibit acetylcholinesterase activity in vivo in mice brain. Phytomedicine 19:1321–1324. https://doi.org/10.1016/j.phymed.2012.08.009

    Article  CAS  PubMed  Google Scholar 

  104. Konrath EL, Neves BM, Lunardi PS, Passos CD, Simoes-Pires A, Ortega MG, Goncalves CA, Cabrera JL, Moreira JCF, Henriques AT (2012) Investigation of the in vitro and ex vivo acetylcholinesterase and antioxidant activities of traditionally used Lycopodium species from South America on alkaloid extracts. J Ethnopharmacol 139:58–67. https://doi.org/10.1016/j.jep.2011.10.042

    Article  PubMed  Google Scholar 

  105. Shimada N, Abe Y, Yokoshima S, Fukuyama T (2012) Total synthesis of (−)-Lycoposerramine-S. Angew Chem Int Ed 51(47):11824–11826. https://doi.org/10.1002/anie.201206863

    Article  CAS  Google Scholar 

  106. Wang XJ, LiL SYK, Yu SS, Ma SG, Bao XQ, Zhang D, Qu J, Liu YB, Li Y (2013) Nine new lycopodine-type alkaloids from Lycopodium japonicum Thunb. Tetrahedron 69:6234–6240. https://doi.org/10.1016/j.tet.2013.05.028

    Article  CAS  Google Scholar 

  107. Vallejo MG, Ortega MG, Cabrera JL, Agnese AM (2013) N-Demethyl-sauroxine, a novel Lycodine group alkaloid from Huperzia saururus. Tetrahedron Lett 54:5197–5200. https://doi.org/10.1016/j.tetlet.2013.07.068

    Article  CAS  Google Scholar 

  108. Pan K, Luo JG, Kong LY (2013) Three new Lycopodium alkaloids from Lycopodium obscurum. J Asian Nat Prod Res 15:441–445. https://doi.org/10.1080/10286020.2013.780045

    Article  CAS  PubMed  Google Scholar 

  109. Liu F, Wu XD, He J, Deng X, Peng LY, Luo HR, Zhao QS (2013) Casuarines A and B, Lycopodium alkaloids from Lycopodium casuarinoides. Tetrahedron Lett 54:4555–4557. https://doi.org/10.1016/j.tetlet.2013.06.083

    Article  CAS  Google Scholar 

  110. Konrath EL, Ortega MG, Bordignon SD, Apel MA, Henriques AT, Cabrera JL (2013) Alkaloid profiling and anticholinesterase activity of South American Lycopodiaceae species. J Enzyme Inhib Med Chem 28:218–222. https://doi.org/10.3109/14756366.2011.633908

    Article  CAS  PubMed  Google Scholar 

  111. Hirasawa Y, Kato Y, Wong CP, Uchiyama N, Goda Y, Hadi AHA, Morita H (2013) Huperminone A, a novel C16N-type Lycopodium alkaloid from Huperzia phlegmaria. Tetrahedron Lett 54:1593–1595. https://doi.org/10.1016/j.tetlet.2013.01.048

    Article  CAS  Google Scholar 

  112. Halldorsdottir ES, Palmadottir RH, Nyberg NT, Olafsdottir ES (2013) Phytochemical analysis of alkaloids from the Icelandic club moss Diphasiastrum alpinum. Phytochem Lett 6:355–359. https://doi.org/10.1016/j.phytol.2013.04.004

    Article  CAS  Google Scholar 

  113. Gerasyuto AI, Ma ZX, Buchanan GS, Hsung RP (2013) Establishing the concept of aza-[3+3] annulations using enones as a key expansion of this unified strategy in alkaloid synthesis. Beilstein J Org Chem 9:1170–1178. https://doi.org/10.3762/bjoc.9.131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Dong LB, Gao X, Liu F, He J, Wu XD, Li Y, Zhao QS (2013) Isopalhinine A, a unique pentacyclic Lycopodium alkaloid from Palhinhaea cernua. Org Lett 15:3570–3573. https://doi.org/10.1021/ol401411m

    Article  CAS  PubMed  Google Scholar 

  115. Cheng JT, Liu F, Li XN, Wu XD, Dong LB, Peng LY, Huang SX, He J, Zhao QS (2013) Lycospidine A, a new type of Lycopodium alkaloid from Lycopodium complanatum. Org Lett 15:2438–2441. https://doi.org/10.1021/ol400907v

    Article  CAS  PubMed  Google Scholar 

  116. Calderon AI, Simithy-Williams J, Sanchez R, Espinosa A, Valdespino I, Gupta MP (2013) Lycopodiaceae from Panama: a new source of acetylcholinesterase inhibitors. Nat Prod Res 27:500–505. https://doi.org/10.1080/14786419.2012.701217

    Article  CAS  PubMed  Google Scholar 

  117. Wang XJ, Li L, Yu SS, Ma SG, Qu J, Liu YB, Li Y, Wang YD, Tang WB (2013) Five new fawcettimine-related alkaloids from Lycopodium japonicum Thunb. Fitoterapia 91:74–81. https://doi.org/10.1016/j.fitote.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  118. Zhang DB, Chen JJ, Zhang L, Song QY, Gao K (2014) Bioactive alkaloids from Palhinhaea cernua. Phytochem Lett 10:76–79. https://doi.org/10.1016/j.phytol.2014.08.008

    Article  CAS  Google Scholar 

  119. Zhang DB, Chen JJ, Song QY, Zhang L, Gao K (2014) Lycodine-type alkaloids from Lycopodiastrum casuarinoides and their acetylcholinesterase inhibitory activity. Molecules 19:9999–10010. https://doi.org/10.3390/molecules19079999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Yu CM, Calhoun LA, Konder RM, Grant AS (2014) Huperzimine, a novel Lycopodium alkaloid from Huperzia serrata. Can J Chem 92:406–410. https://doi.org/10.1139/cjc-2013-0520

    Article  CAS  Google Scholar 

  121. Ying YM, Liu XS, Tong CP, Wang JW, Zhan ZJ, Shan WG (2014) Lycopodium alkaloids from Huperzia serrata. Helv Chim Acta 97:1433–1439. https://doi.org/10.1080/10286020.2010.522180

    Article  CAS  Google Scholar 

  122. Thorroad S, Worawittayanont P, Khunnawutmanotham N, Chimnoi N, Jumruksa A, Ruchirawat S, Thasana N (2014) Three new Lycopodium alkaloids from Huperzia carinata and Huperzia squarrosa. Tetrahedron 70:8017–8022. https://doi.org/10.1016/j.tet.2014.08.042

    Article  CAS  Google Scholar 

  123. Pan K, Luo JG, Kong LY (2014) A new Lycopodium alkaloid from Phlegmariurus fargesii. Chin J Nat Med 12:373–376. https://doi.org/10.1016/S1875-5364(14)60046-7

    Article  CAS  PubMed  Google Scholar 

  124. Liu F, Dong LB, Gao X, Wu XD, He J, Peng LY, Cheng X, Zhao QS (2014) New Lycopodium alkaloids from Phlegmariurus squarrosus. J Asian Nat Prod Res 16:574–580. https://doi.org/10.1080/10286020.2014.920010

    Article  CAS  PubMed  Google Scholar 

  125. Jiang WW, Liu F, Gao X, He J, Cheng X, Peng LY, Wu XD, Zhao QS (2014) Huperserines A-E, Lycopodium alkaloids from Huperzia serrata. Fitoterapia 99:72–77. https://doi.org/10.1016/j.fitote.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  126. Jiang WP, Ishiuchi K, Wu JB, Kitanaka S (2014) Serralongamine A, a new Lycopodium alkaloid from Lycopodium serratum var. longipetiolatum. Heterocycles 89:747–752. https://doi.org/10.3987/COM-13-12928

    Article  CAS  Google Scholar 

  127. Hirasawa Y, Kato Y, Wong CP, Uchiyama N, Goda Y, Hadi AHA, Ali HM, Morita H (2014) Hupermine A, a novel C16N2-type Lycopodium alkaloid from Huperzia phlegmaria. Tetrahedron Lett 55:902–1904. https://doi.org/10.1016/j.tetlet.2014.01.141

    Article  CAS  Google Scholar 

  128. Dong LB, Wu YN, Jiang SZ, Wu XD, He J, Yang YR, Zhao QS (2014) Isolation and complete structural assignment of Lycopodium alkaloid Cernupalhine A: theoretical prediction and total synthesis validation. Org Lett 16:2700–2703. https://doi.org/10.1021/ol500978k

    Article  CAS  PubMed  Google Scholar 

  129. Chuong NN, Huong NTT, Hung TM, Luan TC (2014) Anti-cholinesterase activity of Lycopodium alkaloids from Vietnamese Huperzia squarrosa (Forst.) Trevis. Molecules 19:19172–19179. https://doi.org/10.3390/molecules191119172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chen Y, He HW, Mei ZN, Yang GZ (2014) Lycopodium alkaloids from Lycopodium obscurum L. Helv Chim Acta 97:19–52. https://doi.org/10.1002/hlca.201300243

    Article  CAS  Google Scholar 

  131. Liu YC, Fan M, Jiang WW, Liu F, Wu XD, He J, Cheng X, Peng LY, Su J, Zhang ZJ, Zhao QS (2015) Four new fawcettimine-related alkaloids from Phlegmariurus squarrosus. J Asian Nat Prod Res 17:967–975. https://doi.org/10.1080/10286020.2015.1043281

    Article  CAS  PubMed  Google Scholar 

  132. Li P, Huang W, Zhuo JX, Guo ZY, Cao W, Xu L, Ma LJ, Chen ZE, Kennelly EJ, Wu SB, Long CL (2015) Seven new Lycopodium alkaloids from the aerial parts of Phlegmariurus squarrosus. Tetrahedron 71:5308–5314. https://doi.org/10.1016/j.tet.2015.06.012

    Article  CAS  Google Scholar 

  133. Halldorsdottir ES, Kowal NM, Olafsdottir ES (2015) The genus Diphasiastrum and its Lycopodium alkaloids. Planta Med 81:995–1002. https://doi.org/10.1055/s-0035-1546182

    Article  CAS  PubMed  Google Scholar 

  134. Tang Y, Xiong J, Hu JF (2015) Lycopodium alkaloids from Diphasiastrum complanatum. Nat Prod Commun 10(12):2091–2094. https://doi.org/10.1177/1934578X1501001219

    Article  PubMed  Google Scholar 

  135. Yang YY, Wang ZC, Wu JC, Chen YG (2016) Chemical constituents of plants from the genus Phlegmariurus. Chem Biodivers 13:269–274. https://doi.org/10.1002/cbdv.201500043

    Article  CAS  PubMed  Google Scholar 

  136. Yang Q, Zhu YQ, Peng W, Zhan R, Chen YG (2016) A new Lycopodine-type alkaloid from Lycopodium japonicum. Nat Prod Res 30:2220–2224. https://doi.org/10.1080/14786419.2016.1146885

    Article  CAS  PubMed  Google Scholar 

  137. Wang ZC, Wu JC, Zhao ND, Yang YY, Chen YG (2016) Two new Lycopodium alkaloids from Phlegmariurus phlegmaria (L.) Holub. Nat Prod Res 30:241–245. https://doi.org/10.1080/14786419.2015.1046131

    Article  CAS  PubMed  Google Scholar 

  138. Wang XJ, Li L, Yu SS, Ma SG, Qu J, Liu YB, Li Y, Wang YD, Tang WB (2016) Five new fawcettimine-related alkaloids from Lycopodium japoniucm Thunb (vol 91, pg 74, 2013). Fitoterapia 114:194–194. https://doi.org/10.1016/j.fitote.2016.09.018

    Article  PubMed  Google Scholar 

  139. Wang LJ, Xiong J, Wang W, Zhang HY, Yang GX, Hu JF (2016) Lycopodium alkaloids from Lycopodium obscurum L. f. strictum. Phytochem Lett 15:260–264. https://doi.org/10.1016/j.phytol.2016.02.001

    Article  CAS  Google Scholar 

  140. Tang Y, Xiong J, Zou YK, Zhang HY, Hu JF (2016) Palhicerines A-F, Lycopodium alkaloids from the club moss Palhinhaea cernua. Phytochemistry 131:130–139. https://doi.org/10.1016/j.phytochem.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  141. Tang Y, Xiong J, Zou Y, Nay B, Wang LJ, Hu JF (2016) Palcernuine, the first [5/6/6/6]-cernuane-type alkaloid from Palhinhaea cernua f. sikkimensis. Chin Chem Lett 27:969–973. https://doi.org/10.1016/j.cclet.2016.02.014

    Article  CAS  Google Scholar 

  142. Tang Y, Xiong J, Zhang JJ, Wang W, Zhang HY, Hu JF (2016) Annotinolides A-C, three Lycopodane-derived 8,5-lactones with polycyclic skeletons from Lycopodium annotinum. Org Lett 18:4376–4379. https://doi.org/10.1021/acs.orglett.6b02132

    Article  CAS  PubMed  Google Scholar 

  143. Pongpamorn P, Wanerlor S, Ruchirawat S, Thasana N (2016) Lycoclavatumide and 8 beta,11 alpha-dihydroxylycopodine, a new fawcettimine and lycopodine-type alkaloid from Lycopodium clavatum. Tetrahedron 72:7065–7069. https://doi.org/10.1016/j.tet.2016.09.046

    Article  CAS  Google Scholar 

  144. Nilsu T, Thorroad S, Ruchirawat S, Thasana N (2016) Squarrosine A and Pyrrolhuperzine A, new Lycopodium alkaloids from Thai and Philippine Huperzia squarrosa. Planta Med 82:1046–1050. https://doi.org/10.1055/s-0042-106904

    Article  CAS  PubMed  Google Scholar 

  145. Meng WJ, Xiong J, Wang WX, Zhang HY, Zeng HQ, Hu JF (2016) Phlefargesiine A, a C16N2 Lycopodium alkaloid with an unprecedented [6/7/6/6]-tetracyclic skeleton from Phlegmariurus fargesii. Tetrahedron Lett 57:3218–3221. https://doi.org/10.1016/j.tetlet.2016.06.050

    Article  CAS  Google Scholar 

  146. Liu YC, Su J, Wu XD, Zhang ZJ, Fan M, Zhu QF, He J, Li XN, Peng LY, Cheng X, Zhao QS (2016) Five new Lycopodium alkaloids from the aerial parts of Phlegmariurus henryi. Fitoterapia 115:148–154. https://doi.org/10.1016/j.fitote.2016.10.005

    Article  CAS  PubMed  Google Scholar 

  147. Kogure N, Maruyama M, Wongseripipatana S, Kitajima M, Takayama H (2016) New Lycopodine-type alkaloids from Lycopodium carinatum. Chem Pharm Bull 64:793–799. https://doi.org/10.1248/cpb.c16-00171

    Article  CAS  PubMed  Google Scholar 

  148. Jiang WW, Liu YC, Zhang ZJ, Liu YC, He J, Su J, Cheng X, Peng LY, Shao LD, Wu XD, Yang JH, Zhao QS (2016) Obscurumines H-P, new Lycopodium alkaloids from the club moss Lycopodium obscurum. Fitoterapia 109:155–161. https://doi.org/10.1016/j.fitote.2015.12.017

    Article  CAS  PubMed  Google Scholar 

  149. Ishiuchi K, Jiang WP, Fujiwara Y, Wu JB, Kitanaka S (2016) Serralongamines B-D, three new Lycopodium alkaloids from Lycopodium serratum var. longipetiolatum, and their inhibitory effects on foam cell formation in macrophages. Bioorg Med Chem Lett 26:2636–2640. https://doi.org/10.1016/j.bmcl.2016.04.019

    Article  CAS  PubMed  Google Scholar 

  150. Hao LJ, Zhou YJ, Wang LL, Pan K (2016) Three new Lycopodium alkaloids from Phlegmariurus fargesii. Helv Chim Acta 99:228–231. https://doi.org/10.1002/hlca.201500240

    Article  CAS  Google Scholar 

  151. Dong LB, Wu XD, Shi X, Zhang ZJ, Yang J, Zhao QS (2016) Phleghenrines A-D and Neophleghenrine A, bioactive and structurally rigid Lycopodium alkaloids from Phlegmariurus henryi. Org Lett 18:4498–4501. https://doi.org/10.1021/acs.orglett.6b02065

    Article  CAS  PubMed  Google Scholar 

  152. Cheng JT, Zhang ZJ, Li XN, Peng LY, Luo HR, Wu XD, Zhao QS (2016) Lyconadins G and H, two rare Lyconadin-type Lycopodium alkaloids from Lycopodium complanatum. Nat Prod Bioprospect 6:279–284. https://doi.org/10.1007/s13659-016-0111-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Armijos C, Gilardoni G, Amay L, Lozano A, Bracco F, Ramirez J, Bec N, Larroque C, Finzi PV, Vidari G (2016) Phytochemical and ethnomedicinal study of Huperzia species used in the traditional medicine of Saraguros in Southern Ecuador; AChE and MAO inhibitory activity. J Ethnopharmacol 193:546–554. https://doi.org/10.1016/j.jep.2016.09.049

    Article  CAS  PubMed  Google Scholar 

  154. Zhang ZJ, Nian Y, Zhu QF, Li XN, Su J, Wu XD, Yang J, Zhao QS (2017) Lycoplanine A, a C16N Lycopodium alkaloid with a 6/9/5 tricyclic skeleton from Lycopodium complanatum. Org Lett 19:4668–4671. https://doi.org/10.1021/acs.orglett.7b02293

    Article  CAS  PubMed  Google Scholar 

  155. Wang LL, Zhou ZB, Zhu XL, Yuan FY, Miyamoto T, Pan K (2017) Lycocasuarines A-C, Lycopodium alkaloids from Lycopodiastrum casuarinoides. Tetrahedron Lett 58:4827–4831. https://doi.org/10.1016/j.tetlet.2017.11.019

    Article  CAS  Google Scholar 

  156. Tung BT, Hai NT, Thu DK (2017) Antioxidant and acetylcholinesterase inhibitory activities in vitro of different fraction of Huperzia squarrosa (Forst.) Trevis extract and attenuation of scopolamine-induced cognitive impairment in mice. J Ethnopharmacol 198:24–32. https://doi.org/10.1016/j.jep.2016.12.037

    Article  CAS  PubMed  Google Scholar 

  157. Tang Y, Xiong J, Zou YK, Wang W, Huang C, Zhang HY, Hu JF (2017) Annotinolide F and lycoannotines A-I, further Lycopodium alkaloids from. Phytochemistry 143:1–11. https://doi.org/10.1016/j.phytochem.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  158. Odorcyk FK, Sanches EF, Nicola FC, Moraes J, Pettenuzzo LF, Kolling J, Siebert C, Longoni A, Konrath EL, Wyse A, Netto CA (2017) Administration of Huperzia quadrifariata extract, a cholinesterase inhibitory alkaloid mixture, has neuroprotective effects in a rat model of cerebral hypoxia-ischemia. Neurochem Res 42:552–562. https://doi.org/10.1007/s11064-016-2107-6

    Article  CAS  PubMed  Google Scholar 

  159. Liu YC, Zhang ZJ, Su J, Peng LY, Pan LT, Wu XD, Zhao QS (2017) Lycodine-type Lycopodium alkaloids from the whole plants of Huperzia serrata. Nat Prod Bioprospect 7(5):405–411. https://doi.org/10.1007/s13659-017-0140-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Nakayama W, Monthakantirat O, Fujikawa K, Watthana S, Kitanaka S, Makino T, Ishiuchi K (2017) Phlenumdines A-C, new Lycopodium alkaloids isolated from Phlegmariurus nummularhfolius. Heterocycles 94:2247–2261. https://doi.org/10.3987/COM-17-13797

    Article  CAS  Google Scholar 

  161. Garcia MV, von Poser GL, Apel M, Tlatilpa RC, Mendoza-Ruiz A, Villarreal ML, Henriques AT, Taketa AC (2017) Anticholinesterase activity and identification of Huperzine A in three Mexican lycopods: Huperzia cuernavacensis, Huperzia dichotoma and Huperzia linifolia (Lycopodiaceae). Pak J Pharm Sci 30:235–239

    PubMed  Google Scholar 

  162. Wang LL, Hao LJ, Zhou ZB, Zhu XL, Shi ZH, Miyamoto T, Pan K (2018) Lycodine-type alkaloids and their glycosides from Lycopodiastrum casuarinoides. Phytochemistry 154:63–72. https://doi.org/10.1016/j.phytochem.2018.06.016

    Article  CAS  PubMed  Google Scholar 

  163. Nguyen HT, Doan HT, Ho DV, Pham KT, Raal A, Morita H (2018) Huperphlegmines A and B, two novel Lycopodium alkaloids with an unprecedented skeleton from Huperzia phlegmaria, and their acetylcholinesterase inhibitory activities. Fitoterapia 129:267–271. https://doi.org/10.1016/j.fitote.2018.07.016

    Article  CAS  PubMed  Google Scholar 

  164. Liu Y, Xu PS, Ren Q, Chen X, Zhou G, Li D, Li XM, Xu KP, Yu X, Tan GS (2018) Lycodine-type alkaloids from Lycopodiastrum casuarinoides and their cholinesterase inhibitory activities. Fitoterapia 130:203–209. https://doi.org/10.1016/j.fitote.2018.09.005

    Article  CAS  PubMed  Google Scholar 

  165. Hirasawa Y, Mitsui C, Uchiyama N, Hakamatsuka T, Morita H (2018) Hupercumines A and B, Lycopodium alkaloids from Huperzia cunninghamioides, inhibiting acetylcholinesterase. Org Lett 20:1384–1387. https://doi.org/10.1021/acs.orglett.8b00152

    Article  CAS  PubMed  Google Scholar 

  166. Zhu Y, Dong LB, Zhang ZJ, Fan M, Zhu QF, Qi YY, Liu YC, Peng LY, Wu XD, Zhao QS (2019) Three new Lycopodium alkaloids from Lycopodium japonicum. J Asian Nat Prod Res 21:17–24. https://doi.org/10.1080/10286020.2018.1427075

    Article  CAS  PubMed  Google Scholar 

  167. Jeap JSY, Lim KH, Yong KT, Lim SH, Kam TS, Low YY (2019) Lycopodium alkaloids: lycoplatyrine A, an unusual lycodine-piperidine adduct from Lycopodium platyrhizoma and the absolute configurations of lycoplanine D and lycogladine H. J Nat Prod 82:324–329. https://doi.org/10.1021/acs.jnatprod.8b00754

    Article  CAS  Google Scholar 

  168. Szypuła W, Pietrosiuk A, Suchocki P, Olszowska O, Furmanowa M, Kazimierska O (2005) Somatic embryogenesis and in vitro culture of Huperzia selago shoots as a potential source of Huperzine A. Plant Sci 168:1443–1452. https://doi.org/10.1016/j.plantsci.2004.12.021

    Article  CAS  Google Scholar 

  169. Szypuła WJ, Kiss AK, Pietrosiuk A, Świst M, Danikiewicz W, Olszowska O (2011) Determination of Huperzine A in Huperzia selago plants from wild population and obtained in in vitro culture by high performance liquid chromatography using a chaotropic mobile phase. Acta Chromatogr 23(2):339–352. https://doi.org/10.1556/AChrom.23.2011.2.11

    Article  CAS  Google Scholar 

  170. Feng S, Xia Y, Han D, Zheng C, He X, Tang X, Bai D (2005) Synthesis and acetylcholinesterase inhibition of derivatives of Huperzine B. Bioorg Med Chem Lett 15:523–526. https://doi.org/10.1016/j.bmcl.2004.11.060

    Article  CAS  PubMed  Google Scholar 

  171. Xu H, Tang XC (1987) Cholinesterase inhibition by Huperzine-B. Acta Pharm Sin 8:18–22

    Google Scholar 

  172. Wang LS, Zhou J, Shao XM, Tang XC (2002) Huperzine A attenuates cognitive deficits and brain injury in neonatal rats after hypoxia–ischemia. Brain Res 949:162–170. https://doi.org/10.1016/S0006-8993(02)02977-3

    Article  CAS  PubMed  Google Scholar 

  173. Ortega MG, Agnese AM, Caberera JL (2004) Anticholinesterase activity in an alkaloid extract of Huperzia serrata. Phytomedicine 11:539–543. https://doi.org/10.1016/j.phymed.2003.07.006

    Article  CAS  PubMed  Google Scholar 

  174. Orhman I, Sener B, Choudhary MI, Khalid A (2004) Acetylcholinesterase and butyrylcholinesterase inhibitory activity of some Turkish medicinal plants. J Ethnopharmacol 91:57–60. https://doi.org/10.1016/j.jep.2003.11.016

    Article  Google Scholar 

  175. Szypuła WJ, Mistrzak P, Olszowska O (2013) A new and fast method to obtain in vitro cultures of Huperzia selago (Huperziaceae) sporophytes, a club moss which is a source of Huperzine A. Acta Soc Bot Pol 82:313–320. https://doi.org/10.5586/asbp.2013.034

    Article  CAS  Google Scholar 

  176. Ishiuchi K, Park JJ, Long RM, Gang DR (2013) Production of Huperzine A and other Lycopodium alkaloids in Huperzia species grown under controlled conditions and in vitro. Phytochemistry 91:208–219. https://doi.org/10.1016/j.phytochem.2012.11.012

    Article  CAS  PubMed  Google Scholar 

  177. Lim WH, Goodger JQD, Field AR, Holtum JAM, Woodrow IE (2010) Huperzine alkaloids from Australasian and southeast Asian Huperzia. Pharm Biol 48:1073–1078. https://doi.org/10.3109/13880209.2010.485619

    Article  CAS  PubMed  Google Scholar 

  178. Borloz A, Marston A, Hostettmann K (2006) The determination of Huperzine A in European Lycopodiaceae species by HPLC-UV-MS. Phytochem Anal 17:332–336. https://doi.org/10.1002/pca.922

    Article  CAS  PubMed  Google Scholar 

  179. Valentine DH (1964) Lycopodiaceae L. In: Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) Flora Europea, vol I. Cambridge University Press, Cambridge

    Google Scholar 

  180. Whittier DP, Webster TR (1986) Gametophytes of Lycopodium lucidulum from axenic culture. Am Fern J 76(2):48–55

    Article  Google Scholar 

  181. Whittier DP, Storchova H (2007) The gametophyte of Huperzia selago in culture. Am Fern J 97(3):149–154

    Article  Google Scholar 

  182. Callaghan TV, Svensson BM, Headley A (1986) The modular growth of Lycopodium annotinum. Fern Gaz 13(2):65–76

    Google Scholar 

  183. Freeberg JA, Wetmore RH (1957) Gametophytes of Lycopodium as grown in vitro. Phytomorphology 7:204–217

    Google Scholar 

  184. Freeberg JA (1957) The apogamous development of sporelings of Lycopodium cernuum L., L. complanatum var. Flabelliforme Fernald and L. selago L. in vitro. Phytomorphology 7:217–229

    Google Scholar 

  185. Freeberg JA (1962) Lycopodium prothalli and their endophytic fungi as studied in vitro. Am J Bot 49:530–535

    Article  Google Scholar 

  186. Whittier DP (1977) Gametophytes of Lycopodium obscurum as grown in axenic culture. Can J Bot 55:563–567. https://doi.org/10.1139/b77-067

    Article  Google Scholar 

  187. Whittier DP (1981) Gametophytes of Lycopodium digitatum (formerly L. complanatum var. flalellifare) as grown in axenix culture. Bot Gaz 142:519–524. https://doi.org/10.1086/337254

    Article  Google Scholar 

  188. Atmane N, Blervacq AS, Michaux–Ferriere N, Vasseur J (2000) Histological analysis of indirect somatic embryogenesis in the Marsh clubmoss Lycopodiella inundata (L.) Holub (Pteridophytes). Plant Sci 156:159–167. https://doi.org/10.1016/S0168-9452(00)00244-2

    Article  CAS  PubMed  Google Scholar 

  189. Bienaime C, Melin A, Bensaddek L, Attoumbré J, Nava-Saucedo E (2015) Effects of plant growth regulators on cell growth and alkaloids production by cell cultures of Lycopodiella inundata. Plant Cell Tissue Organ Cult 123(3):523–533. https://doi.org/10.1007/s11240-015-0856-6

    Article  CAS  Google Scholar 

  190. Ma XQ, Gang DR (2008) In vitro production of Huperzine A, a promising drug candidate for Alzheimer’s disease. Phytochemistry 69:2022–2028. https://doi.org/10.1016/j.phytochem.2008.04.017

    Article  CAS  PubMed  Google Scholar 

  191. Williams S (1933) A contribution to the experimental morphology of Lycopodium Selago, with special reference to the development of adventitious shoots. Trans R Soc Edinb Earth Environ Sci 57(3):711–737. https://doi.org/10.1017/S0080456800016938

    Article  Google Scholar 

  192. Knudson L (1922) Nonsymbiotic germination of orchid seeds. Bot Gaz 73:1–25. https://doi.org/10.1086/332956

    Article  Google Scholar 

  193. Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107

    Article  Google Scholar 

  194. Zenkteler E (2006) Cykl życiowy paproci w warunkach eksperymentalnych. Wiad Bot 50(1/2):5–20

    Google Scholar 

  195. Bell PR (1981) The phase change in ferns. Acta Soc Bot Pol 50:307–314. https://doi.org/10.5586/asbp.1981.050

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech J. Szypuła .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Szypuła, W.J., Pietrosiuk, A. (2020). Production of Cholinesterase-Inhibiting Compounds in In Vitro Cultures of Club Mosses. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_30-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_30-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics