Skip to main content

Biosynthesis of Biological Active Abietane Diterpenoids in Transformed Root Cultures of Salvia Species

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 177 Accesses

Abstract

Transformed root cultures of Salvia species are rich in abietane-type diterpenoids. These compounds have various biological activities, such as antimicrobial, cytotoxic, antitumor, anti-inflammatory as well as an ability to induce apoptotic process anti- and inhibit acetyl- and butyrylcholinesterase. Some of them also possess cardioactive properties. Due to many pharmacological activities of abietane diterpenoids, scientists are actively searching for new valuable sources of biomass and its secondary metabolite. Bioactive secondary metabolites can be obtained from field plants. However, in vitro plant cultures, including transformed root cultures, may be an interesting source of these phytocompounds. Genetically modified roots (hairy roots) of Salvia species are obtained by transformation with Agrobacterium rhizogenes strains. Transformed roots have many advantages, such as the possibility of growth without exogenous phytohormones, rapid unlimited growth, genetic stability even after several years of cultivation, and often the possibility of biosynthesis of valuable secondary metabolites in higher amounts than in intact plants. Some of them are able to biosynthesize new compounds, including diterpenes, which have not been detected in the mother plant. Salvia sp. hairy roots can often be grown on a larger scale in bioreactors. After optimizing the culture conditions and/or using elicitors, they are able to biosynthesize abietane diterpenoids in quantities significantly exceeding not only mother plants but also those grown in flasks. The above properties of this kind of plant cultures make them an interesting experimental model in studies aimed at increasing the productivity of biologically active diterpenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Walker JB, Sytsma KJ, Treutlein J, Wink M (2004) Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am J Bot 91:1115–1125

    Article  PubMed  Google Scholar 

  2. Werker E (1993) Function of essential oil secreting glandular hairs in aromatic plans of Lamiaceae – a review. Flavour Frag J 8:249–255

    Article  Google Scholar 

  3. Bisio A, Corallo P, Gastaldo G, Romussi G, Ciarallo N, Fontana N, De Tommasi N, Profumo P (1999) Glandular hairs and secreted material in Salvia blepharophylla Brandegee ex Epling grown in Italy. Ann Bot 83:441–452

    Article  CAS  Google Scholar 

  4. Dweck AC (2000) The folklore and cosmetic use of various salvia species. In: Kintzios SE (ed) Sage. The genus Salvia. Harwood Academic Publishers, Amsterdam

    Google Scholar 

  5. Abu-Darwish MS, Cabral C, Ferreira IV, Gonçalves MJ, Cavaleiro C, Cruz MT, Al-bdour TH, Salgueiro L (2013) Essential oil of common sage (Salvia officinalis L.) from Jordan: assessment of safety in mammalian cells and its antifungal and anti-inflammatory potential. Biomed Res Int 2013:538940

    Google Scholar 

  6. Kharazian N (2014) Chemotaxonomy and flavonoid diversity of Salvia L.(Lamiaceae) in Iran. Acta Bot Bras 28:281–292

    Article  Google Scholar 

  7. Kuźma Ł, Skrzypek Z, Wysokińska H (2006) Diterpenoids and triterpenoids in hairy roots of Salvia sclarea. Plant Cell Tiss Org 84:171–179

    Article  CAS  Google Scholar 

  8. Dent M, Kovačević DB, Bosiljkov T, Dragović-Uzelac V (2017) Polyphenolic composition and antioxidant capacity of indigenous wild dalmatian sage (Salvia officinalis L.). Croat Chem Acta 90:451–459

    Article  CAS  Google Scholar 

  9. Dubey VS, Bhalia R, Luthra R (2003) An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637–646

    Article  CAS  PubMed  Google Scholar 

  10. Bohlmann J, Meyer-Gauen G, Croteau R (1998) Plant terpenoids synthases: molecular biology and phylogenetic analysis. Proc Natl Acad Sci 95:4126–4133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wada K (2002) Studies on structural elucidation of Aconitum diterpenoid alkaloid by LCAPCI-MS and effects of Aconitum diterpenoid alkaloid on cutaneous blood flow. Yakugaku Zasshi 122:929–956

    Article  CAS  PubMed  Google Scholar 

  12. Alvarenga SAV, Gastmans JP, Rodrigues GV, Moreno PRH, Emerenciano VP (2001) A computer-assisted approach for chemotaxonomic studies-diterpenes in Lamiaceae. Phytochemistry 56:583–595

    Article  Google Scholar 

  13. Harinantenaina L, Ryoji K, Kazuo Y (2002) A new ent-kaurane diterpenoid glycoside from the leaves of Cussonia bojeri, a malagasy endemic plant. Chem Pharm Bull 50:1122–1123

    Article  CAS  Google Scholar 

  14. Kingston DGI (1994) Taxol: the chemistry and structure-activity relationships of a novel anticancer agent. Trends Biotechnol 12:222–227

    Article  CAS  PubMed  Google Scholar 

  15. Chang WT, Kang JJ, Lee KY, Wei K, Anderson E, Gotmare S, Ross JA, Rosen GD (2001) Triptolide and chemotherapy cooperate in tumor cell apoptosis. A role for the p53 pathway. J Biol Chem 276:2221–2227

    Article  CAS  PubMed  Google Scholar 

  16. Haidy NK, Slattery M (2005) Terpenoids of Sinularia: chemistry and biomedical applications. Pharm Biol 43:253–269

    Article  CAS  Google Scholar 

  17. Laurenza A, Sutkowski EM, Seamon KB (1989) Forskolin: a specific stimulator of adenylyl cyclase or a diterpene with multiple sites of action? Trends Pharmacol Sci 10:442–447

    Article  CAS  PubMed  Google Scholar 

  18. Sviridov AF (1991) Ginkgolides and bilobalide: structure, pharmacology and synthesis. Bioorg Khim 17:1301–1312

    CAS  PubMed  Google Scholar 

  19. Hanson JR (2004) Diterpenoids. Nat Prod Rep 21:785–793

    Article  CAS  PubMed  Google Scholar 

  20. Ulubelen A, Topcu G, Olçal S (1994) Rearranged abietane diterpenes from Teucrium divaricatum subsp. Villosum. Phytochemistry 37:1371–1375

    Article  CAS  Google Scholar 

  21. Kakisawa H, Hayashi T, Okazaki I, Ohashi M (1968) Isolation and structures of new tanshinones. Tetrahedron Lett 28:3231–3234

    Article  Google Scholar 

  22. Li HB, Chen F (2001) Preparative isolation and purification of six diterpenoids from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatography. J Chromatogr A 925:109–114

    Article  CAS  PubMed  Google Scholar 

  23. Fua J, Huanga H, Liub J, Pia R, Chena J, Liua P (2007) Tanshinone IIA protects cardiac myocytes against oxidative stress-triggered damage and apoptosis. Eur J Pharmacol 568:213–221

    Article  CAS  Google Scholar 

  24. Ren Y, Houghton PJ, Hider RC, Howes MJ (2004) Novel diterpenoid acetylcholinesterase inhibitors from Salvia miltiorrhiza. Planta Med 70:201–204

    Article  CAS  PubMed  Google Scholar 

  25. Ulubelen A, Topcu G, Johansson CB (1997) Norditerpenoids and diterpenoids from Salvia multicaulis with antituberculous activity. J Nat Prod 60:1275–1280

    Article  CAS  PubMed  Google Scholar 

  26. Nagy G, Günther G, Máthé I, Blunden G, Yang M, Crabb TA (1999) Diterpenoids from Salvia glutinosa, S. austriaca, S. tomentosa and S. verticillata roots. Phytochemistry 52:1105–1109

    Article  CAS  Google Scholar 

  27. Spiridonov NA, Arkhipov VV, Foigel AG, Shipulina LD, Fomkina MG (2003) Protonophoric and uncoupling activity of royleanones from Salvia officinalis and euvimals from Eucalyptus viminalis. Phytother Res 17:1228–1230

    Article  CAS  PubMed  Google Scholar 

  28. Gaspar-Marques C, Rijo P, Simões MF, Duarte MA, Rodriguez B (2006) Abietanes from Plectranthus grandidentatus and P. hereroensis against methicillin- and vancomycin-resistant bacteria. Phytomedicine 13:267–271

    Article  CAS  PubMed  Google Scholar 

  29. Xu G, Peng L, Lu L, Weng Z, Zhao Y, Li X, Zhao Q, Sun H (2006) Two new abietane diterpenoids from Salvia yunnanensis. Planta Med 72:84–86

    Article  CAS  PubMed  Google Scholar 

  30. Slameňova D, Mašterowa I, Lábaj J, Horvátova E, Kubala P, Jakubíková J, Wsólová L (2004) Cytotoxcic and DNA-damaging effects of diterpenoid quinones from the roots of Salvia officinalis L. colonic and hepatic human cells cultured in vitro. Basic Clin Pharmacol 94:282–290

    Google Scholar 

  31. Ulubelen A, Öksüz S, Kolak U, Birman H, Voelter W (2000) Cardioactive terpenoids and a new rearranged diterpene from Salvia syriaca. Planta Med 66:627–629

    Article  CAS  PubMed  Google Scholar 

  32. Petit A, Beralaloft A, Tempe J (1986) Multiple transformation of plant cells by Agrobacterium by responsible for complex organization of T-DNA in crown gall on hairy root. Mol Gen Genet 202:388–393

    Article  CAS  Google Scholar 

  33. Sevón N, Oksman-Caldentey K (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868

    Article  PubMed  Google Scholar 

  34. Schell JS (1987) Transgenic plants as tools to study the nuclear organization of plant genus. Science 237:1176–1182

    Article  Google Scholar 

  35. De Paolis A, Mauro ML, Pompom M, Cardarelli M, Spanò L, Costantino P (1985) Localization of agropine-synthesizing functions in the T R region of the root-inducing plasmid of Agrobacterium rhizogenes 1855. Plasmid 13:1–7

    Article  PubMed  Google Scholar 

  36. Petersen SG, Stummann BM, Olsen P, Henningen KW (1989) Structure and function of root-inducing (Ri) plasmids and their relation to tumor-inducing (Ti) plasmids. Physiol Plant 77:427–435

    Article  CAS  Google Scholar 

  37. Chung I-M, Park H-Y, Ali M, San KY, Peebles CAM, Hong S-B, Ahmad A (2007) A new chemical constituent from the hairy root cultures of Catharanthus roseus. Bull Kor Chem Soc 28:229–234

    Article  CAS  Google Scholar 

  38. Kim Y, Wyslouzil BE, Weathers PJ (2002) Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell Dev Biol—Plant 38:1–10

    Article  CAS  Google Scholar 

  39. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  40. Ulubelen A, Sönmez U, Topcu G (1997) Diterpenoids from the roots of Salvia sclarea. Phytochemistry 44:1297–1299

    Article  CAS  Google Scholar 

  41. Moujir L, Gutiérrez-Navarro AM (1996) Bioactive diterpenoids isolated from Salvia mellifera. Phytother Res 10:172–174

    Article  CAS  Google Scholar 

  42. Ulubelen A, Oksüz S, Kolak U, Bozok-Johansson C, Celik C, Voelter W (2000) Antibacterial diterpenes from the roots of Salvia viridis. Planta Med 66:458–462

    Article  CAS  PubMed  Google Scholar 

  43. Tan N, Kaloga M, Radtke OA, Kiderlen AF, Öksüz S, Ulubelen A, Kolodziej H (2002) Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 61:881–884

    Article  CAS  PubMed  Google Scholar 

  44. Hernandez-Pérez M, Rabanal RM, De la Torre CB, Rodriguez B (1995) Analgesic, anti–inflammatory, antipyretic and haematological effects of aethiopinone, an onaphthoquinone diterpenoid from Salvia aethiopis roots and two hemisynthetic derivatives. Planta Med 61(6):505–509

    Article  PubMed  Google Scholar 

  45. Hernandez-Perez M, Rabanal RM, Arias A, De La Torre MC, Rodriguez B (1999) Aethiopinone, an antibacterial and cytotoxic agent from Salvia aethiopis roots. Pharm Biol 37:17–21

    Article  CAS  Google Scholar 

  46. Kuźma Ł, Różalski M, Walencka E, Różalska B, Wysokińska H (2007) Antimicrobial activity of diterpenoids from hairy roots of Salvia sclarea L.: Salvipisone as a potential anti-biofilm agent active against antibiotic resistant staphylococci. Phytomedicine 14:31–35

    Article  CAS  PubMed  Google Scholar 

  47. Walencka E, Różalska S, Wysokińska H, Różalski M, Kuźma Ł, Różalska B (2007) Salvipisone and Aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med 73:545–551

    Article  CAS  PubMed  Google Scholar 

  48. Yang Z, Yoshikazu K, Kazuhiro C, Naohiro S, Hiroshi K, Yohei D, Yoshichika A, Masahiro T (2001) Synthesis of variously oxidized abietane diterpenes and their antibacterial activities against MRSA and VRE. Bioorg Med Chem 9:347–356

    Article  CAS  PubMed  Google Scholar 

  49. Moujir L, Gutiérrez-Navarro AM, San Andrés L, Luis JG (1993) Structure-antimicrobial activity relationships of abietane diterpenes from Salvia species. Phytochemistry 34:1493–1495

    Article  CAS  Google Scholar 

  50. Kuźma Ł, Derda M, Hadaś E, Wysokińska H (2015) Abietane diterpenoids from Salvia sclarea transformed roots as growth inhibitors of pathogenic Acanthamoeba spp. Parasitol Res 114:323–327

    Article  PubMed  Google Scholar 

  51. Różalski M, Kuźma Ł, Krajewska U, Wysokińska H (2006) Cytotoxic and proapoptotic activity of diterpenoids from in vitro cultivated Salvia sclarea roots. Studies on the leukemia cell lines. Z Naturforsch C 61:7–8

    Article  Google Scholar 

  52. Kuźma Ł, Bruchajzer E, Wysokińska H (2008) Diterpenoid production in hairy root culture of Salvia sclarea L. Z Naturforsch C 63:621–624

    Article  PubMed  Google Scholar 

  53. Putalun W, Prasarnsiwamai P, Tanaka H, Shoyama Y (2004) Solasodine glycoside production by hairy root cultures of Physalis minima Linn. Biotechnol Lett 26:545–548

    Article  CAS  PubMed  Google Scholar 

  54. Chaudhuri KN, Ghosh B, Tepfer D, Jha S (2005) Genetic transformation of Tylophora indica with Agrobacterium rhizogenes A4: growth and tylophorine productivity in different transformed root clones. Plant Cell Rep 24:25–35

    Article  CAS  PubMed  Google Scholar 

  55. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333

    Article  CAS  PubMed  Google Scholar 

  56. Kuźma Ł, Bruchajzer E, Wysokińska H (2009) Methyl jasmonate effect on diterpenoid accumulation in Salvia sclarea hairy root culture in shake flasks and sprinkle bioreactor. Enzyme Microb Technol 44:406–410

    Article  CAS  Google Scholar 

  57. Vaccaro M, Malafronte N, Alfieri M, De Tommasi N, Leone A (2014) Enhanced biosynthesis of bioactive abietane diterpenes by overexpressing AtDXS or AtDXR genes in Salvia sclarea hairy roots. Plant Cell Tiss Org 119:65–77

    Article  CAS  Google Scholar 

  58. Vaccaro MC, Mariaevelina A, Malafronte N, De Tommasi N, Leone A (2017) Increasing the synthesis of bioactive abietane diterpenes in Salvia sclarea hairy roots by elicited transcriptional reprogramming. Plant Cell Rep 36:375–386

    Article  CAS  PubMed  Google Scholar 

  59. Kuźma Ł, Kisiel W, Królicka A, Wysokińska H (2011) Genetic transformation of Salvia austriaca by Agrobacterium rhizogenes and diterpenoid isolation. Pharmazie 66:904–907

    PubMed  Google Scholar 

  60. Kuźma Ł, Wysokińska H, Różalski M, Krajewska U, Kisiel W (2012) An unusual taxodione derivative from hairy roots of Salvia austriaca. Fitoterapia 83:770–773

    Article  CAS  PubMed  Google Scholar 

  61. Kuźma Ł, Kaiser M, Wysokińska H (2017) The production and antiprotozoal activity of abietane diterpenes in Salvia austriaca hairy roots grown in shake flasks and bioreactor. Prep Biochem Biotechnol 47:58–66

    Article  PubMed  CAS  Google Scholar 

  62. Spiridonov NA, Arkhipov VV, Foigel AG, Shipulina LD, Fomkina MG (2003) Protonophoric and uncoupling activity of royleanones from Salvia officinalis and euvimals from Eucalyptus viminalis. Phytother Res 10:1228–1230

    Article  CAS  Google Scholar 

  63. Kupchan SM, Karim A, Marcks C (1969) Tumor inhibitors. XLVIII. Taxodione and taxodone, two novel diterpenoid quinone methide tumor inhibitors from Taxodium distichum. J Org Chem 34:3912–3918

    Article  CAS  PubMed  Google Scholar 

  64. Ulubelen A, Topçu G, Chai H, Pezzuto JM (2008) Cytotoxic activity of diterpenoids isolated from Salvia hypargeia. Pharm Biol 37:148–151

    Article  Google Scholar 

  65. Kusumoto N, Ashitani T, Hayasaka Y, Murayama T, Ogiyama K, Takahashi K (2009) Antitermitic activities of abietane-type diterpenes from Taxodium distichum cones. J Chem Ecol 35:635–642

    Article  CAS  PubMed  Google Scholar 

  66. Høiby N, Ciofu O, Johansen HK, Song ZJ, Moser C, Jensen PØ, Molin S, Givskov M, Tolker-Nielsen T, Bjarnsholt T (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gibbons S (2008) Phytochemicals for bacterial resistance-strengths, weaknesses and opportunities. Planta Med 74:594–602

    Article  CAS  PubMed  Google Scholar 

  68. Dürig A, Kouskoumvekaki I, Vejborg RM, Klemm P (2010) Chemoinformatics assisted development of new anti-biofilm compounds. Appl Microb Biotechnol 87:309–317

    Article  CAS  Google Scholar 

  69. Kuźma Ł, Wysokińska H, Różalski M, Budzyńska A, Więckowska-Szakiel M, Sadowska B, Paszkiewicz M, Kisiel W, Różalska B (2012) Antimicrobial and anti-biofilm properties of new taxodione derivative from hairy roots of Salvia austriaca. Phytomedicine 19:1285–1287

    Article  PubMed  CAS  Google Scholar 

  70. Sadowska B, Kuźma Ł, Micota B, Budzyńska A, Wysokińska H, Kłys A, Więckowska-Szakiel M, Różalska B (2016) New biological potential of abietane diterpenoids isolated from Salvia austriaca against microbial virulence factors. Microb Pathogen 98:132–139

    Article  CAS  Google Scholar 

  71. Kuźma Ł, Wysokińska H, Sikora J, Olszewska P, Mikiciuk-Olasik E, Szymański P (2016) Taxodione and extracts from Salvia austriaca roots as human cholinesterase inhibitors. Phytother Res 30:234–242

    Article  PubMed  CAS  Google Scholar 

  72. Kuźma Ł, Wysokińska H (2014) UPLC-DAD determination of taxodione content in hairy roots of Salvia austriaca Jacq. Acta Chrom 26:671–681

    Article  CAS  Google Scholar 

  73. ten Hoopen HJG, van Gulik WM, Schlatmann JE, Moreno PRH, Vinke JL, Heijnen JJ, Verpoorte R (1994) Ajmalicine production by cell cultures of Catharanthus roseus: from shake flask to bioreactor. Plant Cell Tiss Org 38:85–91

    Article  CAS  Google Scholar 

  74. Zheng ZG, Liu D, Hu ZB (1998) Comparison of cell growth and alkaloid production of Catharanthus roseus cell cultured in shake flask and in bioreactor. Acta Bot Sin 40:51–55

    CAS  Google Scholar 

  75. Li J, He LY, Song WZ (1993) Separation and quantitative determination of seven aqueous depsides in Salvia miltiorrhiza by HPLC scanning. Yao Hsueh Pao 28:543–547

    CAS  Google Scholar 

  76. Li L, Tan R, Chen WM (1984) Salvianolic acid a, anew depside from roots of Salvia miltiorrhiza. Planta Med 50:227–228

    Article  CAS  Google Scholar 

  77. Ai C, Li L (1992) Salvianolic acids D and E: two new depsides from Salvia miltiorrhiza. Planta Med 58:197–199

    Article  CAS  PubMed  Google Scholar 

  78. Kohda K, Takeda O, Tanaka S, Yamasaki K, Yamashita A, Kurokawa T, Ishibashi S (1989) Isolation of inhibitors of adenylate cyclase from Dan-shen, the root of Salvia miltiorrhiza. Chem Pharm Bull 37:1287–1290

    Article  CAS  Google Scholar 

  79. Liu AH, Li L, Xu M, Lin YH, Guo HZ, Guo DA (2006) Simultaneous quantification of six major phenolic acids in the roots of Salvia miltiorrhiza and four related traditional Chinese medicinal preparations by HPLC –DAD method. J Pharm Biomed Anal 41:48–56

    Article  PubMed  CAS  Google Scholar 

  80. Au-Yeung (2001) Inhibition of stress-activated protein kinase in the ischemic reperfused heart: role of magnesium tanshinoate B in preventing apoptosis. Biochem Pharmacol 62:483–493

    Article  CAS  PubMed  Google Scholar 

  81. Chan TY (2001) Interaction between warfarin and danshen (Salvia miltiorrhiza). Ann Pharmacother 35:501–504

    Article  CAS  PubMed  Google Scholar 

  82. Kim SY, Moon TC, Chang HW, Son KH, Kang SS (2002) Effects of tanshinoneI isolated from Salvia miltiorrhiza bunge on arachidonic acid metabolism and in vivo inflammatory responses. Phytother Res 16:616–620

    Article  CAS  PubMed  Google Scholar 

  83. Lee TY, Mai LM, Wang GJ, Chiu JH, Lin YL, Lin HC (2003) Protective mechanism of Salvia miltiorrhiza on carbon tetrachloride-induced acute hepatotoxicity in rats. J Pharmacol Sci 91:202–210

    Article  CAS  PubMed  Google Scholar 

  84. Lee C, Sher H, Chen H, Liu C, Chen C, Lin C, Yang P, Tsay H (2008) Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther 7:3527–3538

    Article  CAS  PubMed  Google Scholar 

  85. Liu J, Shen HM, Ong CN (2001) Role of intracellular thiol depletion, mitochondrial dysfunction and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cells. Life Sci 69:1833–1850

    Article  CAS  PubMed  Google Scholar 

  86. Deng J, Zhang DZ, Yang WJ (2006) An in vitro experiment on the antimicrobial effects of ethanol extract from Salvia miltiorrhiza Bunge on several oral pathogenic microbes. Shanghai Kou Qiang Yi Xue 15:210–212

    CAS  PubMed  Google Scholar 

  87. Hu ZB, Alfermann AW (1993) Diterpenoid production in hairy root cultures of Salvia miltiorrhiza. Phytochemistry 32:699–703

    Article  CAS  Google Scholar 

  88. Ge X, Wu J (2005) Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza by hairy roots by β-aminobutyric acid. Appl Microbial Biotechnol 68:183–188

    Article  CAS  Google Scholar 

  89. Cheng QQ, He YF, Li G, Liu Y, Gao W, Huang L (2013) Effects of combined elicitors on tanshinone metabolic profiling and SmCPS expression in Salvia miltiorrhiza hairy root cultures. Molecules 18:7473–7485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Li B, Wang B, Li H, Peng L, Ru M, Liang Z, Yan X, Zhu Y (2016) Establishment of Salvia castanea Diels f. tomentosa Stib. Hairy root cultures and the promotion of tanshinone accumulation and gene expression with ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253:87–100

    Article  CAS  PubMed  Google Scholar 

  91. Yang D, Fang Y, Xia P, Zhang X, Liang Z (2018) Diverse responses of tanshinone biosynthesis to biotic and abiotic elicitors in hairy root cultures of Salvia miltiorrhiza and Salvia castanea Diels f. tomentosa. Gene 643:61–67

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Łukasz Kuźma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kuźma, Ł. (2019). Biosynthesis of Biological Active Abietane Diterpenoids in Transformed Root Cultures of Salvia Species. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_25-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_25-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics