Skip to main content

Secondary Metabolism in Tissue and Organ Cultures of Plants from the Tribe Cichorieae

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 222 Accesses

Abstract

Specialized metabolites produced by plants of the Cichorieae tribe are of the vital interest  to both plant breeders and consumers. The compounds are responsible for the taste, aroma, health benefactory properties, plant-plant and plant-insect interactions, as well as pathogen and pest resistance. The chapter deals with a production of the specialized metabolites in various types of plant in vitro cultures and differences in biosynthetic capability of the field-grown plants and their undifferentiated and differentiated tissue and organ cultures in vitro. An attempt was made to draw some conclusions concerning biosynthetic limitations of particular plant tissue culture techniques. Four genera of the Cichorieae tribe that are of importance as popular vegetables and/or traditional medicines, i.e.,Cichorium,Lactuca,Scorzonera,and Taraxacum, were described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2,4-d:

2,4-Dichlorophenoxyacetic acid

2iP:

N6-(2-isopentenyl)adenine

5-CQA:

Chlorogenic acid

BA:

Benzyladenine, 6-benzylaminopurine

CQA:

Caffeoylquinic acid

CTA:

Caffeoyltartaric acid, caftaric acid

DCQA:

Dicaffeoylquinic acid

DCTA:

Dicaffeoyltartaric acid, chicoric acid

DW:

Dry weight

FW:

Fresh weight

GB5:

Gamborg’s B5 culture medium

GC-MS:

Gas chromatography with mass spectrometry detection

HPLC-MS:

High-performance liquid chromatography with mass spectrometry detection

IAA:

Indole-3-acetic acid

MJ:

Methyl jasmonate

MS:

Murashige and Skoog culture medium

NAA:

1-Naphthaleneacetic acid

TCQA:

Tricaffeoylquinic acid

References

  1. Funk VA, Susanna A, Stuessy TF, Bayer RJ (2009) Systematics, evolution and biogeography of Compositae. International Association for Plant Taxonomy, Vienna

    Google Scholar 

  2. Schütz K, Carle R, Schieber A (2006) Taraxacum – a review on its phytochemical and pharmacological profile. J Ethnopharmacol 107:313–323

    Article  PubMed  CAS  Google Scholar 

  3. Guarrera PM, Savo V (2013) Perceived health properties of wild and cultivated food plants in local and popular traditions of Italy: a review. J Ethnopharmacol 146:659–680

    Article  CAS  PubMed  Google Scholar 

  4. Łuczaj Ł, Jug-Dujaković M, Dolina K, Jeričević M, Vitasović-Kosić I (2019) The ethnobotany and biogeography of wild vegetables in the Adriatic islands. J Ethnobiol Ethnomed 15:18

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sansanelli S, Tassoni A (2014) Wild food plants traditionally consumed in the area of Bologna (Emilia Romagna region, Italy). J Ethnobiol Ethnomed 10:69

    Article  PubMed  PubMed Central  Google Scholar 

  6. Seaman FC, Funk VA (1983) Cladistic analysis of complex natural products: developing transformation series from sesquiterpene lactone data. Taxon 32:1–27

    Article  CAS  Google Scholar 

  7. Kim KH, Lee KH, Choi SU, Kim YH, Lee KR (2008) Terpene and phenolic constituents of Lactuca indica L. Arch Pharm Res 31:983–988

    Article  CAS  PubMed  Google Scholar 

  8. Michalska K, Beharav A, Kisiel W (2014) Chemotaxonomic value of magastigmane glucosides of Cichorium calvum. Nat Prod Commun 9:311–312

    CAS  PubMed  Google Scholar 

  9. Foster JG, Clapham WM, Belesky DP, Labreveux M, Hall MH, Sanderson MA (2006) Influence of cultivation site on sesquiterpene lactone composition of forage chicory (Cichorium intybus L.). J Agric Food Chem 54:1772–1778

    Article  CAS  PubMed  Google Scholar 

  10. Tamura Y, Mori T, Nakabayashi R, Kobayashi M, Saito K, Okazaki S, Wang N, Kusano M (2018) Metabolomic evaluation of the quality of leaf lettuce grown in practical plant factory to capture metabolite signature. Front Plant Sci 9:665

    Article  PubMed  PubMed Central  Google Scholar 

  11. Magaña Ugarte R, Escuderob A, Gavilána RG (2019) Metabolic and physiological responses of Mediterranean high-mountain and alpine plants to combined abiotic stresses. Physiol Plant 165:403–412

    PubMed  Google Scholar 

  12. Bennet RN, Wallsgrove RM (1994) Tansley review no. 72: secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  Google Scholar 

  13. Zubek S, Stojakowska A, Anielska T, Turnau K (2010) Arbuscular mycorrhizal fungi alter thymol derivative contents of Inula ensifolia L. Mycorrhiza 20:497–504

    Article  CAS  PubMed  Google Scholar 

  14. Rozpądek P, Wężowicz K, Stojakowska A, Malarz J, Surówka E, Sobczyk Ł, Anielska T, Ważny R, Miszalski Z, Turnau K (2014) Mycorrhizal fungi modulate phytochemical production and antioxidant activity of Cichorium intybus L. (Asteraceae) under metal toxicity. Chemosphere 112C:217–224

    Article  CAS  Google Scholar 

  15. Granica S, Lohwasser U, Jöhrer K, Zidorn C (2015) Qualitative and quantitative analyses of secondary metabolites in aerial and subaerial of Scorzonera hispanica L. (black salsify). Food Chem 173:321–331

    Article  CAS  PubMed  Google Scholar 

  16. Sarı A (2010) Two new 3-benzylphthalides from Scorzonera veratrifolia Fenzl. Nat Prod Res 24:56–62

    Article  PubMed  CAS  Google Scholar 

  17. Zidorn C, Ellmerer EP, Sturm S, Stuppner H (2003) Tyrolobibenzyls E and F from Scorzonera humilis and distribution of caffeic acid derivatives, lignans and tyrolobibenzyls in European taxa of the subtribe Scorzonerinae (Lactuceae, Asteraceae). Phytochemistry 63:61–67

    Article  CAS  PubMed  Google Scholar 

  18. Xie Y, Guo Q-S, Wang G-S (2016) Flavonoid glycosides and their derivatives from the herbs of Scorzonera austriaca Wild. Molecules 21:803

    Article  PubMed Central  CAS  Google Scholar 

  19. Saltan Çıtoğlu G, Bahadir Ö, Dall’Acqua S (2010) Dihydroisocoumarin derivatives isolated from the roots of Scorzonera latifolia. Turk J Pharm Sci 7:205–212

    Google Scholar 

  20. Sarı A, Zidorn C, Ellmerer EP, Özgökçe F, Ongania K-H, Stuppner H (2007) Phenolic compounds from Scorzonera tomentosa L. Helv Chim Acta 90:311–317

    Article  Google Scholar 

  21. Wang Y (2009) Isolation and structure elucidation of bioactive secondary metabolites from Mongolian medicinal plants. Dissertation, Heinrich-Heine University, Düsseldorf

    Google Scholar 

  22. Leu Y-L, Shi L-S, Damu AG (2003) Chemical constituents of Taraxacum formosanum. Chem Pharm Bull 51:599–601

    Article  CAS  Google Scholar 

  23. Leu Y-L, Wang Y-L, Huang S-C, Shi L-S (2005) Chemical constituents from roots of Taraxacum formosanum. Chem Pharm Bull 53:853–855

    Article  CAS  Google Scholar 

  24. Schütz K, Kammerer DR, Carle R, Schieber A (2005) Characterization of phenolic acids and flavonoids in dandelion (Taraxacum officinale WEB. ex Wigg.) root and herb by high-performance liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 19:179–186

    Article  PubMed  CAS  Google Scholar 

  25. Huber M, Triebwasser-Freese D, Reichelt M, Heiling S, Paetz C, Chandran JN, Bartram S, Schneider B, Gershenzon J, Erb M (2015) Identification, quantification, spatiotemporal distribution and genetic variation of major latex secondary metabolites in the common dandelion (Taraxacum officinale agg.). Phytochemistry 115:89–98

    Article  CAS  PubMed  Google Scholar 

  26. Sharifi-Rad M, Roberts TH, Matthews KR, Bezerra CF, Morais-Braga MFB, Coutinho HDM, Sharopov F, Salehi B, Yousaf Z, Sharifi-Rad M, del Mar Contreras M, Varoni EM, Verma DR, Iriti M, Sharifi-Rad J (2018) Ethnobotany of the genus Taraxacum – phytochemicals and antimicrobial activity. Phytother Res 32:2131–2145

    Article  CAS  PubMed  Google Scholar 

  27. Michalska K, Galanty A, Michalski O, Stojakowska A (2019) Further sesquiterpenoids and phenolics from two species of Taraxacum F.H. Wigg. and cytotoxic activity of taraxinic acid and its derivatives. Phytochem Lett 30:296–301

    Article  CAS  Google Scholar 

  28. Kurkin VA, Aznagulova AV (2019) Constituents of the aerial part of Taraxacum officinale. Chem Nat Compd 52:711–712

    Article  CAS  Google Scholar 

  29. Ribas-Agustí A, Gratacós-Cubarasí M, Sárraga C, García-Regueiro J-A, Castellari M (2011) Analysis of eleven phenolic compounds including novel p-coumaroyl derivatives in lettuce (Lactuca sativa L.) by ultra-high-performance liquid chromatography with photodiode array and mass spectrometry detection. Phytochem Anal 22:555–563

    Article  PubMed  CAS  Google Scholar 

  30. Abu-Reidah IM, Contreras MM, Arráez-Román D, Segura-Carretero A, Fernández-Gutiérrez A (2013) Reversed-phase ultra-high-performance liquid chromatography coupled to electrospray ionization-quadrupole-time-of-flight mass spectrometry as a powerful tool for metabolic profiling of vegetables: Lactuca sativa as an example of its application. J Chromatogr A 1313:212–227

    Article  CAS  PubMed  Google Scholar 

  31. Vicava GE, Roura SI, Berrueta LA, Iriondo C, Gallo B, Alonso-Salces RM (2017) Characterization of phenolic compounds in green and red oak-leaf lettuce cultivars by UHPLC-DAD-ESI-QtoF/MS using MSE scan mode. J Mass Spectrom 52:873–902

    Article  CAS  Google Scholar 

  32. Yang X, Wei S, Liu B, Guo D, Zheng B, Feng L, Liu Y, Tomás-Barberán FA, Luo L, Huang D (2018) A novel integrated non-targeted metabolomic analysis reveals significant metabolite variations between different lettuce (Lactuca sativa L.) varieties. Hortic Res 5:33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hou C-C, Lin S-J, Cheng J-T, Hsu F-L (2003) Antidiabetic dimeric guianolides and a lignan glycoside from Lactuca indica. J Nat Prod 66:625–629

    Article  CAS  PubMed  Google Scholar 

  34. Michalska K, Szneler E, Kisiel W (2010) Lactuca altaica as a rich source of sesquiterpene lactones. Biochem Syst Ecol 38:1246–1249

    Article  CAS  Google Scholar 

  35. Michalska K, Stojakowska A, Kisiel W (2012) Phenolic constituents of Lactuca tenerrima. Biochem Syst Ecol 42:32–34

    Article  CAS  Google Scholar 

  36. Stojakowska A, Michalska K, Malarz J, Beharav A, Kisiel W (2013) Root tubers of Lactuca tuberosa as a source of antioxidant phenolic compounds and new furofuran lignans. Food Chem 138:1250–1255

    Article  CAS  PubMed  Google Scholar 

  37. Michalska K, Kisiel W, Stojakowska A (2015) Chemical constituents of Lactuca dregeana. Biochem Syst Ecol 59:302–304

    Article  CAS  Google Scholar 

  38. Stojakowska A, Michalska K, Kłeczek N, Malarz J, Beharav A (2018) Phenolics and terpenoids from a wild edible plant Lactuca orientalis (Boiss.) Boiss.: a preliminary study. J Food Compos Anal 69:20–24

    Article  CAS  Google Scholar 

  39. Carazzone C, Mascherpa D, Gazzani G, Papetti A (2013) Identification of phenolic constituents in red chicory salads (Cichorium intybus) by high-performance liquid chromatography with diode array detection and electrospray ionisation tandem mass spectrometry. Food Chem 138:1062–1071

    Article  CAS  PubMed  Google Scholar 

  40. Papetti A, Maietta M, Corana F, Marrubini G, Gazzani G (2017) Polyphenolic profile of green/red spotted Italian Cichorium intybus salads by RP-HPLC-PDA-ESI-MS. J Food Compos Anal 63:189–197

    Article  CAS  Google Scholar 

  41. Tardugno R, Pozzebon M, Beggio M, Del Turco P, Pojana G (2018) Polyphenolic profile of Cichorium intybus L. endemic varieties from the Veneto region of Italy. Food Chem 266:175–182

    Article  CAS  PubMed  Google Scholar 

  42. Hussain H, Hussain J, Saleem M, Miana GA, Riaz M, Krohn K, Anwar S (2011) Cichorin A: a new benzo-isochromene from Cichorium intybus. J Asian Nat Prod Res 13:566–569

    Article  CAS  PubMed  Google Scholar 

  43. Hussain H, Hussain J, Ali S, Al-Harrasi A, Saleem M, Miana GA, Riaz M, Anwar S, Hussain S, Ali L (2012) Cichorins B and C: two new benzo-isochromenes from Cichorium intybus. J Asian Nat Prod Res 14:297–300

    Article  CAS  PubMed  Google Scholar 

  44. Kisiel W, Michalska K (2002) A new coumarin glucoside ester from Cichorium intybus. Fitoterapia 73:544–546

    Article  CAS  PubMed  Google Scholar 

  45. Kisiel W, Zielińska K (2001) Guaianolides from Cichorium intybus and structure revision of Cichorium sesquiterpene lactones. Phytochemistry 57:523–527

    Article  CAS  PubMed  Google Scholar 

  46. Saied S, Shah S, Ali Z, Khan A, Marasini BP, Choudhary MI (2011) Chemical constituents of Cichorium intybus and their inhibitory effects against urease and α-chymotrypsin enzymes. Nat Prod Commun 6:1117–1120

    CAS  PubMed  Google Scholar 

  47. Nørbæk R, Nielsen K, Kondo T (2002) Anthocyanins from flowers of Cichorium intybus. Phytochemistry 60:357–359

    Article  PubMed  Google Scholar 

  48. Michalska K, Kisiel W (2007) Further sesquiterpene lactones and phenolics from Cichorium spinosum. Biochem Syst Ecol 35:714–714

    Article  CAS  Google Scholar 

  49. Melliou E, Magiatis P, Skaltsounis A-L (2003) Alkylresorcinol derivatives and sesquiterpene lactones from Cichorium spinosum. J Agric Food Chem 51:1289–1292

    Article  CAS  PubMed  Google Scholar 

  50. Zidorn C (2008) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae. Phytochemistry 69:2270–2296

    Article  CAS  PubMed  Google Scholar 

  51. Shulha O, Zidorn C (2019) Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update (2008–2017). Phytochemistry 163:149. https://doi.org/10.1016/j.phytochem.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  52. Wu Q-X, He X-F, Jiang C-X, Zhang W, Shi Z-N, Li H-F, Zhu Y (2018) Two novel bioactive sulfated guaiane sesquiterpenoid salt alkaloids from the aerial parts of Scorzonera divaricata. Fitoterapia 124:113–119

    Article  CAS  PubMed  Google Scholar 

  53. Wang B, Li GQ, Qiu PJ, Guan HS (2007) Two new olean-type triterpene fatty esters from Scorzonera mongolica. Chin Chem Lett 18:708–710

    Article  CAS  Google Scholar 

  54. Bahadir Ö, Çitoğlu GS, Šmejkal K, Dall’Acqua S, Özbek H, Cvacka J, Zemlicka M (2010) Analgesic compounds from Scorzonera latifolia (Fisch. and Mey.) DC. J Ethnopharmacol 131:83–87

    Article  CAS  PubMed  Google Scholar 

  55. Wu Q-X, Su Y-B, Zhu Y (2011) Triterpenes and steroids from the roots of Scorzonera austriaca. Fitoterapia 82:493–496

    Article  CAS  PubMed  Google Scholar 

  56. Yang Y-J, Yao J, Jin X-J, Shi Z-N, Shen T-F, Fang J-G, Yao X-J, Zhu Y (2016) Sesquiterpenoids and tirucallane triterpenoids from the roots of Scorzonera divaricata. Phytochemistry 124:86–98

    Article  CAS  PubMed  Google Scholar 

  57. Bahadır-Acıkara Ö, Özbilgin S, Saltan-İşcan G, Dall’Acqua S, Rjašková V, Özgökçe F, Suchý V, Šmejkal K (2018) Phytochemical analysis of Podospermum and Scorzonera n-hexane extracts and the HPLC quantitation of triterpenes. Molecules 23:1813

    Article  PubMed Central  CAS  Google Scholar 

  58. Ahn JH, Mo EJ, Jo YH, Hwang BY, Lee MK (2019) Two new sesquiterpenes from the roots of Taraxacum coreanum. Chem Nat Compd 55:278–280

    Article  CAS  Google Scholar 

  59. Warashina T, Umehara K, Miyase T (2012) Constituents from the roots of Taraxacum platycarpum and their effect on proliferation of human skin fibroblasts. Chem Pharm Bull 60:205–212

    Article  CAS  Google Scholar 

  60. Saeki D, Yamada T, In Y, Kajimoto T, Tanaka R, Iizuka Y, Nakane T, Takano A, Masuda K (2013) Officinatrione: an unusual (17S)-17,18-seco-lupane skeleton, and four novel lupane-type triterpenoids from the roots of Taraxacum officinale. Tetrahedron 69:1583–1589

    Article  CAS  Google Scholar 

  61. Kikuchi T, Tanaka A, Uriuda M, Yamada T, Tanaka R (2016) Three novel triterpenoids from Taraxacum officinale roots. Molecules 21:1121

    Article  PubMed Central  CAS  Google Scholar 

  62. Kisiel W, Barszcz B, Szneler E (2000) A new lupane-type triterpenoid from Taraxacum officinale. Pol J Chem 74:281–283

    CAS  Google Scholar 

  63. Schmidt T, Lenders M, Hillebrand A, van Deenen N, Munt O, Reichelt R, Eisenreich W, Fischer R, Prüfer D, Schulze Gronover C (2010) Characterization of rubber particles and rubber chain elongation in Taraxacum koksaghyz. BMC Biochem 11:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Naumoska K, Vovk I (2015) Analysis of triterpenoids and phytosterols in vegetables by thin-layer chromatography coupled to tandem mass spectrometry. J Chromatogr A 1381:229–238

    Article  CAS  PubMed  Google Scholar 

  65. Bakker MI, Baas WJ, Sijm DTHM, Kollöffel C (1998) Leaf wax of Lactuca sativa and Plantago major. Phytochemistry 47:1489–1493

    Article  CAS  Google Scholar 

  66. Bushman BS, Scholte AA, Cornish K, Scott DJ, Brichta JL, Vederas JC, Ochoa O, Michelmore RW, Shintani DK, Knapp SJ (2006) Identification and comparison of natural rubber from two Lactuca species. Phytochemistry 67:2590–2596

    Article  CAS  PubMed  Google Scholar 

  67. Shinozaki J, Nakane T, Onodera N, Takano A, Masuda K (2011) Composite constituent: lactucenyl acetate, a novel migrated lupane triterpenoid from Lactuca indica revision of structure of tarolupenyl acetate. Chem Pharm Bull 59:767–769

    Article  CAS  Google Scholar 

  68. Atta-ur-Rahman, Zareen S, Choudhary MI, Akhtar MN, Khan SN (2008) α-Glucosidase inhibitory activity of triterpenoids from Cichorium intybus. J Nat Prod 71:910–913

    Article  CAS  PubMed  Google Scholar 

  69. Wu H, Su Z, Xin X, Aisa HA (2010) Two new sesquiterpene lactones and a triterpene glycoside from Cichorium glandulosum. Helv Chim Acta 93:414–420

    Article  CAS  Google Scholar 

  70. Kisiel W, Michalska K, Szneler E (2004) Norisoprenoids from aerial parts of Cichorium pumilum. Biochem Syst Ecol 32:343–346

    Article  CAS  Google Scholar 

  71. Wu HK, Xin XL, Su Z, Aisa HA (2011) 2-Isopropyl-6-methylpyrimidin-4(3H)-one and taraxasterol from the stems of Cichorium glandulosum. Chem Nat Compd 47:664–666

    Article  CAS  Google Scholar 

  72. Michalska K, Kisiel W (2014) Chemical constituents from Lactuca inermis, a wild African species. Biochem Syst Ecol 55:104–106

    Article  CAS  Google Scholar 

  73. Roberfroid MB (2000) Chicory fructooligosaccharides and the gastrointestinal tract. Nutrition 16:677–679

    Article  CAS  PubMed  Google Scholar 

  74. Tolstikhina VV, Bryanskii OV, Syrchina AI, Semenov AA (1988) Chemical composition of a culture of tissue of Scorzonera hispanica. Chem Nat Compd 24:655

    Article  Google Scholar 

  75. Bryanskii OV, Tolstikhina VV, Semenov AA (1992) A glycoside of syringaresinol from a tissue culture of Scorzonera hispanica. Chem Nat Compd 28:519–520

    Article  Google Scholar 

  76. Bryanskii OV, Tolstikhina VV, Zinchenko SV, Semenov AA (1992) A sesquiterpene glucoside from cultivated cells of Scorzonera hispanica. Chem Nat Compd 28:556–560

    Article  Google Scholar 

  77. Khobrakova VB, Nikolaev SM, Tolstikhina VV, Semenov AA (2003) Immunomodulating properties of lignan glucoside from cultivated cells of Scorzonera hispanica L. Pharm Chem J 37:345–346

    Article  CAS  Google Scholar 

  78. Hook I, Sheridan H, Wilson G (1991) Volatile metabolites from suspension cultures of Taraxacum officinale. Phytochemistry 30:3977–3979

    Article  CAS  Google Scholar 

  79. Akashi T, Furuno T, Takahashi T, Ayabe S-I (1994) Biosynthesis of triterpenoids in cultured cells, and regenerated and wild plant organs of Taraxacum officinale. Phytochemistry 36:303–308

    Article  CAS  Google Scholar 

  80. Sharma K, Zafar R (2016) Optimization of methyl jasmonate and β-cyclodextrin for enhanced production of taraxerol and taraxasterol in (Taraxacum officinale Weber) cultures. Plant Physiol Biochem 103:24–30

    Article  CAS  PubMed  Google Scholar 

  81. Akashi T, Saito N, Hirota H, Ayabe S-I (1997) Anthocyanin-producing dandelion callus as a chalcone synthase source in recombinant polyketide reductase assay. Phytochemistry 46:283–287

    Article  CAS  PubMed  Google Scholar 

  82. Martínez ME, Poirrier P, Prüfer D, Schulze Gronover C, Jorquera L, Ferrer P, Díaz K, Chamy R (2018) Kinetics and modeling of cell growth for potential anthocyanin induction in cultures of Taraxacum officinale G.H. Weber ex Wiggers (Dandelion). Electron J Biotechnol 36:15–23

    Article  CAS  Google Scholar 

  83. Stojakowska A, Malarz J, Kisiel W (1994) Sesquiterpene lactones in tissue culture of Lactuca virosa. Planta Med 60:93–94

    Article  CAS  PubMed  Google Scholar 

  84. Stojakowska A, Kisiel W (2000) Neolignan glycosides from a cell suspension culture of Lactuca virosa. Pol J Chem 74:153–155

    CAS  Google Scholar 

  85. Tamura H, Akioka T, Ueno K, Chujyo T, Okazaki K-I, King PJ, Robinson WE Jr (2006) Anti-human immunodeficiency virus activity of 3,4,5-tricaffeoylquinic acid in cultured cells of lettuce leaves. Mol Nutr Food Res 50:396–400

    Article  CAS  PubMed  Google Scholar 

  86. Stojakowska A, Malarz J, Szewczyk A, Kisiel W (2012) Caffeic acid derivatives from a hairy root culture of Lactuca virosa. Acta Physiol Plant 34:291–298

    Article  CAS  Google Scholar 

  87. Stojakowska A, Malarz J (2017) Bioactive phenolics from in vitro cultures of Lactuca aculeata Boiss. et Kotschy. Phytochem Lett 19:7–11

    Article  CAS  Google Scholar 

  88. Malarz J, Stojakowska A, Szneler E, Kisiel W (2005) Furofuran lignans from a callus culture of Cichorium intybus. Plant Cell Rep 24:246–249

    Article  CAS  PubMed  Google Scholar 

  89. Malarz J, Stojakowska A, Kisiel W (2013) Long-term cultured hairy roots of chicory – a rich source of hydroxycinnamates and 8-deoxylactucin glucoside. Appl Biochem Biotechnol 171:1589–1601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Post J, Eisenreich W, Huber C, Twyman RM, Prüfer D, Schulze Gronover C (2014) Establishment of an ex vivo laticifer cell suspension culture from Taraxacum brevicorniculatum as a production system for cis-isoprene. J Mol Catal B Enzym 103:85–93

    Article  CAS  Google Scholar 

  91. Rehman RU, Israr M, Srivastava PS, Bansal KC, Abdin MZ (2003) In vitro regeneration of witloof chicory (Cichorium intybus L.) from leaf explants and accumulation of esculin. In Vitro Cell Dev Biol Plant 39:142–146

    Article  Google Scholar 

  92. Jamshieed S, Das S, Sharma MP, Srivastava PS (2010) Difference in in vitro response and esculin content in two populations of Taraxacum officinale Weber. Physiol Mol Biol Plants 16:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bogdanović MD, Todorović SI, Banjanac T, Dragićević MB, Verstappen FWA, Bouwmeester HJ, Simonović AD (2014) Production of guaianolides in Agrobacterium rhizogenes-transformed chicory regenerants flowering in vitro. Ind Crop Prod 60:52–59

    Article  CAS  Google Scholar 

  94. Mahesh A, Jeyachandran R (2011) Agrobacterium rhizogenes-mediated hairy root induction in Taraxacum officinale and analysis of sesquiterpene lactones. Plant Biosyst 145:620–626

    Article  Google Scholar 

  95. Kisiel W, Stojakowska A, Malarz J, Kohlmünzer S (1995) Sesquiterpene lactones in Agrobacterium rhizogenes-transformed hairy root culture of Lactuca virosa. Phytochemistry 40:1139–1140

    Article  CAS  Google Scholar 

  96. Song Q, Gomez-Barrios ML, Hopper EL, Hjortso MA, Fischer NH (1995) Biosynthetic studies of lactucin derivatives in hairy root cultures of Lactuca floridana. Phytochemistry 40:1659–1665

    Article  CAS  Google Scholar 

  97. Malarz J, Kisiel W (1999) Effect of methyl jasmonate on the production of sesquiterpene lactones in the hairy root culture of Lactuca virosa L. Acta Soc Bot Pol 68:119–121

    Article  CAS  Google Scholar 

  98. Malarz J, Kisiel W (2000) Effect of pectinase on the production of sesquiterpene lactones in the hairy root culture of Lactuca virosa L. Acta Soc Bot Pol 69:115–117

    Article  CAS  Google Scholar 

  99. El-Esawi M, Elkelish A, Elansary HO, Ali HM, Elshikh M, Witczak J, Ahmad M (2017) Genetic transformation and hairy root induction enhance the antioxidant potential of Lactuca serriola L. Oxid Med Cell Longev 2017:5604746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Bais HP, Sudha G, Ravishankar GA (1999) Putrescine influences growth and production of coumarins in hairy root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local). J Plant Growth Regul 18:159–165

    Article  CAS  PubMed  Google Scholar 

  101. Bais HP, Sudha G, Ravishankar GA (2001) Putrescine influences growth and production of coumarins in transformed and untransformed root cultures of witloof chicory (Cichorium intybus L. cv. Lucknow Local). Acta Physiol Plant 23:319–327

    Article  CAS  Google Scholar 

  102. Malarz J, Stojakowska A, Kisiel W (2002) Sesquiterpene lactones in a hairy root culture of Cichorium intybus. Z Naturforsch C 57:994–997

    Article  CAS  PubMed  Google Scholar 

  103. Malarz J, Stojakowska A, Kisiel W (2007) Effect of methyl jasmonate and salicylic acid on sesquiterpene lactone accumulation in hairy roots of Cichorium intybus. Acta Physiol Plant 29:127–132

    Article  CAS  Google Scholar 

  104. Malarz J, Stojakowska A, Szneler E, Kisiel W (2013) A new neolignan glucoside from hairy roots of Cichorium intybus. Phytochem Lett 6:59–61

    Article  CAS  Google Scholar 

  105. Fathi R, Mohebodini M, Chamani E (2019) High-efficiency Agrobacterium rhizogenes-mediated genetic transformation in Cichorium intybus L. via removing macronutrients. Ind Crop Prod 128:572–580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Stojakowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Stojakowska, A., Malarz, J. (2019). Secondary Metabolism in Tissue and Organ Cultures of Plants from the Tribe Cichorieae. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics