Skip to main content

Glandular Trichomes on the Leaves of Nicotiana tabacum: Morphology, Developmental Ultrastructure, and Secondary Metabolites

  • Living reference work entry
  • First Online:
Plant Cell and Tissue Differentiation and Secondary Metabolites

Abstract

Glandular trichomes found on the surface of many higher plants contain specialized cells that produce and secrete copious amounts of particular secretory products. Leaf glandular trichomes of the non-model plant species Nicotiana tabacum represent a biologically active and stress-responsive tissue that contributes to plant defense response against biotic and abiotic stress and also influences leaf aroma and smoke flavor. Two morphologically different types of tobacco capitate trichomes, long- and short-stalked, with distinct functions, display ultrastructural features that are common to terpene-secreting glands, but only the secretory cells of the tall glandular trichomes are considered to be the site of biosynthesis of certain exudate compounds, including diterpenes and sucrose esters. Ultrastructural and histochemical characterization of tall glandular trichomes is described in an attempt to understand the contribution of these glands to the total secretion produced. Possible roles of distinct cellular compartments involved in the secretory process and secondary metabolite secretion under in vitro conditions are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Evert RF (2006) External secretory structures. In: Evert RF (ed) Esau’s plant anatomy: meristem, cells, and tissues of the plant body: their structure, function and development, 3rd edn/Rev. edn of: Plant anatomy/Katherine Esau 2nd edn, 1965. Wiley, New York

    Google Scholar 

  2. Kelsey RG, Reynolds GW, Rodriguez E (1984) The chemistry of biologically active constituents secreted and stored in plant glandular trichomes. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York

    Google Scholar 

  3. Keene CK, Wagner GJ (1985) Direct demonstration of duvatrienediol biosynthesis in glandular heads of tobacco trichomes. Plant Physiol 79:1026–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Turner GW, Gershenzon J, Croteau RB (2000) Development of peltate glandular trichomes of peppermint. Plant Physiol 124:665–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichomes. Ann Bot 93:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Venditti A, Bianco A, Nicoletti M, Quassinti L, Bramucci M, Lupidi G, Vitali LA, Papa F, Vittori S, Petrelli D, Maleci Bini L, Giuliani C, Maggi F (2014) Characterization of secondary metabolites, biological activity and glandular trichomes of Stachys tymphaea Hausskn. from the Monti Sibillini National Park (Central Apennines, Italy). Chem Biodivers 11:245–261

    Article  CAS  PubMed  Google Scholar 

  7. Shepherd RW, Troy Bass W, Houtz RL, Wagner GJ (2005) Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell 17: 1851–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ersek T, Kiraly Z (1986) Phytoalexins: warding-off compounds in plants. Physiol Plant 68:343–346

    Article  CAS  Google Scholar 

  9. Dell B, McComb JA (1978) Plant resins – their formation, secretion and possible functions. Adv Bot Res 6:276–316

    Google Scholar 

  10. Schwachtje J, Baldwin IT (2008) Why does herbivore attack reconfigure primary metabolism? Plant Physiol 146:845–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Verpoorte R (2000) Secondary metabolism. In: Verpoorte R, Alfermann AW (eds) Metabolic engineering of plant secondary metabolism. Kluwer Academic Publishers, Dordrecht

    Chapter  Google Scholar 

  12. Corsi G, Bottega S (1999) Glandular hairs of Salvia officinalis: new data on morphology, localization and histochemistry in relation to function. Ann Bot 84:657–664

    Article  Google Scholar 

  13. Machado SR, Gregório EA, Guimarães E (2006) Ovary peltate trichomes of Zeyheria montana (Bignoniaceae): developmental ultrastructure and secretion in relation to function. Ann Bot 97:357–369

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kandra L, Wagner GJ (1988) Studies of the site and mode of biosynthesis of tobacco trichome exudate compounds. Arch Biochem Biophys 265:425–432

    Article  CAS  PubMed  Google Scholar 

  15. Sallaud C, Giacalone C, Töpfer R, Goepfert S, Bakaher N, Rösti S, Tissier A (2012) Characterization of two genes for the biosynthesis of the labdane diterpene Z-abienol in tobacco (Nicotiana tabacum) glandular trichomes. Plant J 72:1–17

    Article  CAS  PubMed  Google Scholar 

  16. Wolf F, Jones E (1944) Comparative structure of green leaves of oriental tobacco at different levels on the stalk in relation to their quality upon curing. Bull Torrey Bot Club 71:512–528. https://doi.org/10.2307/2481244

    Article  Google Scholar 

  17. Wang E, Wang R, De Parasis J, Loughrin JH, Gan S, Wagner GJ (2001) Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat Biotechnol 19:371–374

    Article  CAS  PubMed  Google Scholar 

  18. Jassbi AR, Zare S, Asadollahi M, Schuman MC (2017) Ecological roles and biological activities of specialized metabolites from the genus Nicotiana. Chem Rev 117: 12227–12280. https://doi.org/10.1021/acs.chemrev.7b00001

    Article  CAS  PubMed  Google Scholar 

  19. Isah T, Umar S, Mujib A, Sharma MP, Rajasekharan PE, Zafar N, Frukh A (2018) Secondary metabolism of pharmaceuticals in the plant in vitro cultures: strategies, approaches, and limitations to achieving higher yield. Plant Cell Tiss Organ Cult 132:239–265

    Article  CAS  Google Scholar 

  20. Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatt A, Naidoo Y, Nicholas A (2010) An investigation of the glandular and non-glandular foliar trichomes of Orthosiphon labiatus N.E.Br. [Lamiaceae]. New Zeal J Bot 48:153–161. https://doi.org/10.1080/0028825X.2010.500716

    Article  Google Scholar 

  22. Ehleringer J (1982) The influence of water stress and temperature on leaf pubescence development in Encelia farinosa. Am J Bot 69:670–675

    Article  Google Scholar 

  23. Ehleringer J, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162

    Article  CAS  PubMed  Google Scholar 

  24. Ascensão L, Pais MS (1998) The leaf capitate trichomes of Leonotis leonurus: histochemistry, ultrastructure and secretion. Ann Bot 81:263–271

    Article  Google Scholar 

  25. Ascensão L, Mota L, Castro M, De M (1999) Glandular trichomes on the leaves and flowers of Plectranthus ornatus: morphology, distribution and histochemistry. Ann Bot 84:437–447

    Article  Google Scholar 

  26. Lange BM, Turner GW (2013) Terpenoid biosynthesis in trichomes – current status and future opportunities. Plant Biotech J 11:2–22

    Article  CAS  Google Scholar 

  27. Metcalfe CR, Chalk L (1950) List of families in which certain diagnostic features occur. In: Anatomy of the dicotyledones, 1st edn. Clarendon Press, Oxford

    Google Scholar 

  28. Fahn A (1988) Secretory tissues in vascular plants. New Phytol 108:229–257

    Article  PubMed  Google Scholar 

  29. Fahn A, Shimony C (1977) Development of the glandular and non-glandular leaf hairs of Avicennia marina (Forsskål) Vierh. Bot J Linn Soc 74:37–46

    Article  Google Scholar 

  30. Werker E (1993) Function of essential oil-secreting glandular hairs in aromatic plants of Lamiaceae – a review. Flavour Frag J 8:249–255

    Article  Google Scholar 

  31. Ascensão L, Marques N, Pais MS (1995) Glandular trichomes on vegetative and reproductive organs of Leonotis leonurus (Lamiaceae). Ann Bot 75:619–626

    Article  Google Scholar 

  32. Ascensão L, Marques N, Pais MS (1997) Peltate glandular trichomes of Leonotis leonurus leaves: ultrastructure and histochemical characterization of secretions. Int J Plant Sci 158: 249–258

    Article  Google Scholar 

  33. Mota L, Figueiredo AC, Pedro LG, Barroso JG, Ascensão L (2013) Glandular trichomes, histochemical localization of secretion, and essential oil composition in Plectranthus grandidentatus growing in Portugal. Flavour Fragr J 28:393–401

    Article  CAS  Google Scholar 

  34. Stojičić D, Tošić S, Slavkovska V, Zlatković B, Budimir S, Janošević D, Uzelac B (2016) Glandular trichomes and essential oil characteristics of in vitro propagated Micromeria pulegium (Rochel) Benth. (Lamiaceae). Planta 244:393–404

    Article  CAS  PubMed  Google Scholar 

  35. Bourett TM, Howard RJ, O’Keefe DP, Hallahan DL (1994) Gland development on leaf surfaces of Nepeta racemosa. Int J Plant Sci 155:623–632

    Article  Google Scholar 

  36. Kolb D, Müller M (2004) Light, conventional and environmental scanning electron microscopy of the trichomes of Cucurbita pepo subsp. pepo var. styriaca and histochemistry of glandular secretory products. Ann Bot 94:515–526

    Article  PubMed  PubMed Central  Google Scholar 

  37. Choi J-S, Lee NY, Oh S-E, Son K-C, Kim E-S (2011) Developmental ultrastructure of glandular trichomes of Rosmarinus officinalis: secretory cavity and secretory vesicle formation. J Plant Biol 54:135–142

    Article  Google Scholar 

  38. Amrehn E, Heller A, Spring O (2014) Capitate glandular trichomes of Helianthus annuus (Astearceae): ultrastructure and cytological development. Protoplasma 251:161–167

    Article  PubMed  Google Scholar 

  39. Bergau N, Bennewitz S, Syrowatka F, Hause G, Tissier A (2015) The development of type VI glandular trichomes in the cultivated tomato Solanum lycopersicum and a related wild species S. habrochaites. BMC Plant Biol 15:289. https://doi.org/10.1186/s12870-015-0678-z

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lin Y, Wagner GJ (1994) Surface disposition and stability of pest-interactive, trichome-exuded diterpenes and sucrose esters of tobacco. J Chem Ecol 20:1907–1921

    Article  CAS  PubMed  Google Scholar 

  41. Slocombe SP, Schauvinhold I, McQuinn RP, Besser K, Welsby NA, Harper A, Aziz N, Li Y, Larson TR, Giovannoni J, Dixon RA, Broun P (2008) Transcriptomic and reverse genetic analyses of branched-chain fatty acid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiol 148:1830–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li S, Tosens T, Harley PC, Jiang Y, Kanagendran A, Grosberg M, Jaamets K, Niinemets Ü (2018) Glandular trichomes as a barrier against atmospheric oxidative stress: relationships with ozone uptake, leaf damage, and emission of LOX products across a diverse set of species. Plant Cell Environ 41:1263–1277. https://doi.org/10.1111/pce.13128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Harada E, Kim J-A, Meyer AJ, Hell R, Clemens S, Choi Y-E (2010) Expression profiling of tobacco leaf trichomes identifies genes for biotic and abiotic stresses. Plant Cell Physiol 51:1627–1637. https://doi.org/10.1093/pcp/pcq118

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka M (1955) Leaf hairs of Nicotiana. Hatano Exp Sta Special Bull 6:1–22

    Google Scholar 

  45. Meyberg M, Krohn S, Brümmer B, Kristen U (1991) Ultrastructure and secretion of glandular trichomes of tobacco leaves. Flora 185:357–363

    Article  Google Scholar 

  46. Severson RF, Johnson AW, Jackson DM (1985) Cuticular constituents of tobacco: factors affecting their production and their role in insect and disease resistance and smoke quality. Rec Adv Tob 11:105–173

    CAS  Google Scholar 

  47. Heemann V, Brümmer U, Paulsen C, Seehofer F (1983) Composition of the leaf surface gum of some Nicotiana species and Nicotiana tabacum cultivars. Phytochemistry 22:133–135

    Article  CAS  Google Scholar 

  48. Van Cutsem E, Simonart G, Degand H, Faber A-M, Morsomme P, Boutry M (2011) Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response. Proteomics 11:440–454

    Article  CAS  PubMed  Google Scholar 

  49. Jud W, Fischer L, Canaval E, Wohlfahrt G, Tissier A, Hansel A (2016) Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry. Atmos Chem Phys 16:277–292

    Article  CAS  Google Scholar 

  50. Aloni R, Schwalm K, Langhans M, Ullrich CI (2003) Gradual shifts in sites of free-auxin production during leaf-primordium development and their role in vascular differentiation and leaf morphogenesis in Arabidopsis. Planta 216:841–853. https://doi.org/10.1007/s00425-002-0937-8

    Article  CAS  PubMed  Google Scholar 

  51. Choi Y-E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H (2001) Detoxification of cadmium in tobacco plants: formation and active secretion of crystals containing cadmium and calcium through trichomes. Planta 213:45–50

    Article  CAS  PubMed  Google Scholar 

  52. Sarret G, Harada E, Choi Y-E, Isaure M-P, Geoffroy N, Fakra S, Marcus MA, Birschwilks M, Clemens S, Manceau A (2006) Trichomes of tobacco excrete zinc as zinc-substituted calcium carbonate and other zinc-containing compounds. Plant Physiol 141:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Avery GS Jr (1933) Structure and development of the tobacco leaf. Am J Bot 20:565–592

    Article  Google Scholar 

  54. Bentley NJ, Wolf FA (1945) Glandular leaf hairs of oriental tobacco. Bull Torrey Bot Club 72:345–360

    Article  Google Scholar 

  55. Capdesuñer Y, García-Brizuela J, Mock HP, Hernández KV, Hernández de la Torre M, Santiesteban-Toca CE (2019) Accessing to the Nicotiana tabacum leaf antimicrobial activity: in-silico and in-vitro investigations. Plant Physiol Biochem 139C:591–599

    Article  CAS  Google Scholar 

  56. Akers CP, Weybrew JA, Long RC (1978) Ultrastructure of glandular trichomes of leaves of Nicotiana tabacum L., cv. Xanthi. Am J Bot 65:282–292

    Article  Google Scholar 

  57. Nielsen MT, Akers CP, Järlfors UE, Wagner GJ, Berger S (1991) Comparative ultrastructural features of secreting and nonsecreting glandular trichomes of two genotypes of Nicotiana tabacum L. Bot Gaz 152:13–22

    Article  Google Scholar 

  58. Uzelac B, Janošević D, Stojičić D, Budimir S (2015) In vitro morphogenesis and secretion of secondary metabolites of Nicotiana tabacum tall glandular trichomes. Bot Serb 39:103–110

    Google Scholar 

  59. Christensen NM, Faulkner C, Oparka K (2009) Evidence for unidirectional flow through plasmodesmata. Plant Physiol 150:96–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hülskamp M, Miséra S, Jürgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76:555–566

    Article  PubMed  Google Scholar 

  61. Schnittger A, Hulskamp M (2002) Trichome morphogenesis: a cell-cycle perspective. Philos Trans Royal Soc B 357:823–826

    Article  CAS  Google Scholar 

  62. Hülskamp M, Mathur J (2001) Trichome development, genetics of. In: Encyclopedia of genetics. Academic Press, New York, pp 2045–2048

    Chapter  Google Scholar 

  63. Grebe M (2012) The patterning of epidermal hairs in Arabidopsis – updated. Curr Opin Plant Biol 15:31–37

    Article  CAS  PubMed  Google Scholar 

  64. Uzelac B, Janošević D, Stojičić D, Budimir S (2017) Morphogenesis and developmental ultrastructure of Nicotiana tabacum short glandular trichomes. Micros Res Tech 80:779–786

    Article  Google Scholar 

  65. Hurkman WJ, Kennedy GS (1977) Development and cytochemistry of the thylakoid body in tobacco chloroplasts. Am J Bot 64:86–95

    Article  Google Scholar 

  66. Chappell J (1995) Update on metabolism: the biochemistry and molecular biology of isoprenoid metabolism. Plant Physiol 107:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Werker E, Fahn A (1981) Secretory hairs of Inula viscosa (L.) Ait. – development, ultrastructure, and secretion. Bot Gaz 142:461–476

    Article  Google Scholar 

  68. Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Article  Google Scholar 

  69. Cheniclet C, Carde J-P (1985) Presence of leucoplasts in secretory cells and of monoterpenes in the essential oil: a correlative study. Isr J Bot 34:219–238

    Google Scholar 

  70. Ascensão L, Pais MS (1982) Secretory trichomes from Artemisia crithmifolia: some ultrastructural aspects. Bull Soc Bot Fr 129:83–87

    Google Scholar 

  71. Franceschi VR, Giaquinta RT (1983) Glandular trichomes of soybean leaves: cytological differentiation from initiation through senescence. Bot Gaz 144:175–184

    Article  Google Scholar 

  72. Croteau R, Johnson MA (1984) Biosynthesis of terpenoids in glandular trichomes. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum, New York

    Google Scholar 

  73. Cui H, Zhang S-T, Yang H-J, Ji H, Wang X-J (2011) Gene expression profile analysis of tobacco leaf trichomes. BMC Plant Biol 11:76. https://doi.org/10.1186/1471-2229-11-76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Amme S, Rutten T, Melzer M, Sonsmann G, Vissers J, Schlesier B, Mock H (2005) A proteome approach defines protective functions of tobacco leaf trichomes. Proteomics 5:2508–2518. https://doi.org/10.1002/pmic.200401274

    Article  CAS  PubMed  Google Scholar 

  75. Cui H, Zhang H, Weng ML (2008) Morphological research on chloroplast of tobacco trichome during development. Acta Botan Boreali-Occiden Sin 28:1592–1595

    Google Scholar 

  76. Zhang H, Ji H, Liang ZM, Cui H (2008) Effects of water stress on ultrastructure of tobacco leaf trichome. Acta Tabacaria Sin 14:45–47

    Google Scholar 

  77. Liang ZM, Ji H, Weng ML, Zhang H, Cui H (2009) Effects of applying organic manure on morphology and structure of chloroplast in flue-cured tobacco trichomes. Acta Botan Boreali-Occiden Sin 29:291–295

    Google Scholar 

  78. Machado SR, Gregório EA, Rodrigues TM (2018) Structural associations between organelle membranes in nectary parenchyma cells. Planta 247:1067–1076

    Article  CAS  PubMed  Google Scholar 

  79. Bosabalidis A, Tsekos I (1982) Ultrastructural studies on the secretory cavities of Citrus deliciosa ten. II. Development of the oil-accumulating central space of the gland and process of active secretion. Protoplasma 112:63–70

    Article  Google Scholar 

  80. Turner GW, Croteau R (2004) Organization of monoterpene biosynthesis in Mentha. Immunocytochemical localizations of geranyl diphosphate synthase, limonene-6-hydroxylase, isopiperitenol dehydrogenase and pulegone reductase. Plant Physiol 136:4215–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Samuels L, McFarlane HE (2012) Plant cell wall secretion and lipid traffic at membrane contact sites of the cell cortex. Protoplasma 249(Suppl 1):S19–S23

    Article  CAS  PubMed  Google Scholar 

  82. Tissier A, Morgan JA, Dudareva N (2017) Plant volatiles: going ‘In’ but not ‘Out’ of trichome cavities. Trends Plant Sci 22:930–938

    Article  CAS  PubMed  Google Scholar 

  83. Crouzet J, Roland J, Peeters E, Trombik T, Ducos E, Nader J, Boutry M (2013) NtPDR1, a plasma membrane ABC transporter from Nicotiana tabacum, is involved in diterpene transport. Plant Mol Biol 82:181–192. https://doi.org/10.1007/s11103-013-0053-0

    Article  CAS  PubMed  Google Scholar 

  84. Choi YE, Lim S, Kim H-J, Han JY, Lee M-H, Yang Y, Kim J-A, Kim Y-S (2012) Tobacco NtLTP1, a glandular-specific lipid transfer protein, is required for lipid secretion from glandular trichomes. Plant J 70:480–491

    Article  CAS  PubMed  Google Scholar 

  85. Guo J, Zhou C (2019) Secretory structures of Pogostemon auricularius: morphology, development and histochemistry. Symmetry 11:13. https://doi.org/10.3390/sym11010013

    Article  CAS  Google Scholar 

  86. Caissard JC, Olivier T, Delbecque C, Palle S, Garry PP, Audran A, Valot N, Moja S, Nicolé F, Magnard J-L, Legrand S, Baudino S, Jullien F (2012) Extracellular localization of the diterpene sclareol in clary sage (Salvia sclarea L., Lamiaceae). PLoS One 7(10):e48253. https://doi.org/10.1371/journal.pone.0048253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Krüger H, Van Rensburg L, Peacock J (1996) Cuticular membrane fine structure of Nicotiana tabacum L. leaves. Ann Bot 77:11–16

    Article  Google Scholar 

  88. Gravano E, Tani C, Bennici A, Gucci R (1998) The ultrastructure of glandular trichomes of Phillyrea latifolia L. (Oleaceae) leaves. Ann Bot 81:327–335

    Article  Google Scholar 

  89. Uzelac B, Janošević D, Simonović A, Motyka V, Dobrev PI, Budimir S (2016) Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro. Protoplasma 253:259–275

    Article  CAS  PubMed  Google Scholar 

  90. Vanyushin BF, Bakeeva LE, Zamyatnina VA, Aleksandrushkina NI (2004) Apoptosis in plants: specific features of plant apoptotic cells and effect of various factors and agents. Int Rev Cytol 233:135–179

    Article  CAS  PubMed  Google Scholar 

  91. Schussler ES, Longstreth DJ (2000) Changes in cell structure during the formation of root aerenchyma in Sagittaria lancifolia (Alismataceae). Am J Bot 87:12–19

    Article  CAS  PubMed  Google Scholar 

  92. Huang S-S, Kirchoff BK, Liao J-P (2008) The capitate and peltate glandular trichomes of Lavandula pinnata L. (Lamiaceae): histochemistry, ultrastructure, and secretion. J Torrey Bot Soc 135:155–167

    Article  Google Scholar 

  93. Hepler PK, Palevitz BA, Lancelle SA, McCauley MM, Lichtschidl L (1990) Cortical endoplasmic reticulum in plants. J Cell Sci 96:355–373

    CAS  Google Scholar 

  94. Staehelin LA (1997) The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J 11:1151–1165

    Article  CAS  PubMed  Google Scholar 

  95. Chen C-C, Chen Y-R (2007) Study on laminar hydathodes of Ficus formosana (Moraceae) III. Salt injury of guttation on hydathodes. Bot Stud 48:215–226

    Google Scholar 

  96. Brillouet J-M, Romieu C, Schoefs B, Solymosi K, Cheynier V, Fulcrand H, Verdeil J-L, Conéjéro G (2013) The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot 112:1003–1014. https://doi.org/10.1093/aob/mct168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Nugroho LH, Verpoorte R (2002) Secondary metabolism in tobacco. Plant Cell Tiss Organ Cult 68:105–125

    Article  CAS  Google Scholar 

  98. Wahlberg I, Enzell CR (1987) Tobacco isoprenoids. Nat Prod Rep 4:237–276

    Article  CAS  PubMed  Google Scholar 

  99. Cutler HG, Cole RJ (1974) Properties of a plant growth inhibitor extracted from immature tobacco leaves. Plant Cell Physiol 15:19–28

    CAS  Google Scholar 

  100. Cutler HG, Reid WW, Delétang J (1977) Plant growth inhibiting properties of diterpenes from tobacco. Plant Cell Physiol 18:711–714

    CAS  Google Scholar 

  101. Uegaki R, Fujimori T, Kubo S, Kato K (1981) Sesquiterpenoid stress compounds from Nicotiana species. Phytochemistry 20:1567–1568

    Article  CAS  Google Scholar 

  102. Zhang H, Zhang S, Yang Y, Jia H, Cui H (2018) Metabolic flux engineering of cembratrien-ol production in both the glandular trichome and leaf mesophyll in Nicotiana tabacum. Plant Cell Physiol 59:566–574

    Article  CAS  PubMed  Google Scholar 

  103. Shitan N (2016) Secondary metabolites in plants: transport and self-tolerance mechanisms. Biosci Biotechnol Biochem 80:1283–1293. https://doi.org/10.1080/09168451.2016.1151344

    Article  CAS  PubMed  Google Scholar 

  104. Schilmiller AL, Last RL, Pichersky E (2008) Harnessing plant trichome biochemistry for the production of useful compounds. Plant J 54:702–711

    Article  CAS  PubMed  Google Scholar 

  105. Zador E, Jones D (1986) The biosynthesis of a novel nicotine alkaloid in the trichomes of Nicotiana stocktonii. Plant Physiol 82:479–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Laue G, Preston CA, Baldwin IT (2000) Fast track to the trichome: induction of N-acyl nornicotines precedes nicotine induction in Nicotiana repanda. Planta 210:510–514

    Article  CAS  PubMed  Google Scholar 

  107. Steppuhn A, Gase K, Krock B, Halitschke R, Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2(8):e217. https://doi.org/10.1371/journal.pbio.0020217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Baldwin IT (1998) Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci USA 95:8113–8118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Voirin B, Bayet C, Coulso M (1993) Demonstration that flavone aglycones accumulate in the peltate glands of Mentha × piperita leaves. Phytochemistry 34:85–87

    Article  CAS  Google Scholar 

  110. Gould KS, Lister C (2006) Flavonoid functions in plants. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  111. Wollenweber E, Dörsam M, Dörr M, Roitman JN, Valant-Vetschera KM (2005) Chemodiversity of surface flavonoids in Solanaceae. Z Naturforsch 60:661–670

    Article  CAS  Google Scholar 

  112. Glas JJ, Schimmel BCJ, Alba JM, Escobar-Bravo R, Schuurink RC, Kant MR (2012) Plant glandular trichomes as targets for breeding or engineering of resistance to herbivores. Int J Mol Sci 13:17077–17103. https://doi.org/10.3390/ijms131217077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fobes JF, Mudd JB, Marsden MPF (1985) Epicuticular lipid accumulation on the leaves of Lycopersicon pennellii (Corr.) D’Arcy and Lycopersicon esculentum Mill. Plant Physiol 77:567–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kroumova AB, Wagner GJ (2003) Different elongation pathways in the biosynthesis of acyl groups of trichome exudate sugar esters from various solanaceous plants. Planta 216:1013–1021

    CAS  PubMed  Google Scholar 

  115. Luckwill LC (1943) The genus Lycopersicon. Aberdeen Univ Stud 120:5–44

    Google Scholar 

  116. Serrato-Valenti G, Bisio A, Cornara L, Ciarallo G (1997) Structural and histochemical investigation of the glandular trichomes of Salvia aurea L. leaves, and chemical analysis of the essential oil. Ann Bot 79:329–336

    Article  CAS  Google Scholar 

  117. Christodoulakis NS, Kogia D, Mavroeidi D, Fasseas C (2010) Anatomical and histochemical investigation of the leaf of Teucrium polium, a pharmaceutical sub-shrub of the Greek phryganic formations. J Biol Res-Thessalon 14:199–209

    Google Scholar 

  118. Zuzarte MR, Dinis AM, Cavaleiro C, Salgueiro LR, Canhoto JM (2010) Trichomes, essential oils and in vitro propagation of Lavandula pedunculata (Lamiaceae). Ind Crop Prod 32:580–587

    Article  CAS  Google Scholar 

  119. Matias LJ, Mercadante-Simões MO, Royo VA, Ribeiro LM, Santos AC, Fonseca JMS (2016) Structure and histochemistry of medicinal species of Solanum. Rev Bras Farmacogn 26:147–160

    Article  CAS  Google Scholar 

  120. Pearse AGE (1968) Histochemistry: theoretical and applied, 3rd edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  121. David R, Carde JP (1964) Coloration différentelle des inclusions lipidiques et terpéniques des pseudophylles du pin maritime au moyen du réactif Nadi. CR Acad Sci Paris 258:1338–1340

    CAS  Google Scholar 

  122. Ascensão L, Pais MS (1987) Glandular trichomes of Artemisia campestris (ssp. Maritima): ontogeny and histochemistry of the secretory product. Bot Gaz 148:221–227

    Article  Google Scholar 

  123. Marin M, Jasnić N, Ascensão L (2013) Histochemical, micromorphology and ultrastructural investigation in glandular trichomes of Micromeria thymifolia. Bot Serbica 37(1):49–53

    Google Scholar 

  124. Tošić S, Stojičić D, Slavkovska V, Mihailov-Krstev T, Zlatković B, Budimir S, Uzelac B (2019) Phytochemical composition and biological activities of native and in vitro-propagated Micromeria croatica (Pers.) Schott (Lamiaceae). Planta 249:1365–1377

    Article  CAS  PubMed  Google Scholar 

  125. Minteguiaga M, Mercadi MI, Ponessa GI, Catalán CAN, Dellacassa E (2018) Morphoanatomy and essential oil analysis of Baccharis trimera (Less.) DC. (Asteraceae) from Uruguay. Ind Crops Prod 112:488–498

    Article  CAS  Google Scholar 

  126. Picoli EAT, Isaias RMS, Ventrella MC, Miranda RM (2013) Anatomy, histochemistry and micromorphology of leaves of Solanum granuloso-leprosum Dunal. Biosci J 29:655–666

    Google Scholar 

  127. Sacchetti G, Ballero M, Serafini M, Muzzoli M, Tosi B, Poli F (2002) Glandular trichomes of Orobanche ramosa subsp. nana (Orobanchaceae). Phyton 43:207–214

    Google Scholar 

  128. Ventrella MC, Marinho CR (2008) Morphology and histochemistry of glandular trichomes of Cordia verbenacea DC. (Boraginaceae) leaves. Revista Brasil Bot 31:457–467

    Article  Google Scholar 

  129. Boff S, Demarco D, Marchi P, Alves-Dos-Santos I (2015) Perfume production in flowers of Angelonia salicariifolia attracts males of Euglossa annectans which do not promote pollination. Apidologie 46:84–91

    Article  CAS  Google Scholar 

  130. Dantas LA, Melo AM, Pereira PS, Souza LA, Filho SCV, Silva FG (2017) Histochemical screening of leaves compared to in situ and in vitro calluses of Solanum aculeatissimum Jacq. J Agr Sci 9:80–96. https://doi.org/10.5539/jas.v9n7p80

    Article  Google Scholar 

  131. Karam NS, Jawad FM, Arikat NA, Shibli RA (2003) Growth and rosmarinic acid accumulation in callus, cell suspension and root cultures of wild Salvia fruticosa. Plant Cell Tiss Org Cult 73:117–121

    Article  CAS  Google Scholar 

  132. De-Eknamkul W, Ellis BE (1985) Effects of macronutrients on growth and rosmarinic acid formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep 4:46–49

    Article  CAS  PubMed  Google Scholar 

  133. De-Eknamkul W, Ellis BE (1985) Effects of auxins and cytokinins on growth and rosmarinic acid formation in cell suspension cultures of Anchusa officinalis. Plant Cell Rep 4:50–53

    Article  CAS  PubMed  Google Scholar 

  134. Hippolyte I, Mann B, Baccou JC, Jonard R (1992) Growth and rosmarinic acid production in cell suspension cultures of Salvia officinalis L. Plant Cell Rep 11:109–112

    Article  CAS  PubMed  Google Scholar 

  135. Dornenburg H, Knorr D (1995) Strategies for improvement of secondary metabolite production in plant cell cultures. Enz Microb Technol 17:674–684

    Article  Google Scholar 

  136. Murthy HN, Lee E-J, Paek K-Y (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Organ Cult 118:1–16

    Article  CAS  Google Scholar 

  137. Krstić-Milošević D, Janković T, Uzelac B, Vinterhalter D, Vinterhalter B (2017) Effect of elicitors on xanthone accumulation and biomass production in hairy root cultures of Gentiana dinarica. Plant Cell Tiss Organ Cult 130:631–640. https://doi.org/10.1007/s11240-017-1252-1

    Article  CAS  Google Scholar 

  138. DiCosmo F, Towers GHN (1984) Stress and secondary metabolism in cultured plant cells. In: Timmermann BN, Steelink C, Loewus FA (eds) Phytochemical adaptations to stress: recent advances in phytochemistry, vol 18. Springer, New York

    Google Scholar 

  139. Weathers PJ, Bunk G, McCoy MC (2005) The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots. In Vitro Cell Dev Biol Plant 41:47–53

    Article  CAS  Google Scholar 

  140. Mendes MD, Figueiredo AC, Oliveira MM, Trindade H (2013) Essential oil production in shoot cultures versus field-grown plants of Thymus caespititius. Plant Cell Tiss Organ Cult 113:341–351. https://doi.org/10.1007/s11240-012-0276-9

    Article  CAS  Google Scholar 

  141. Affonso VR, Bizzo HR, Salguiero Lage CL, Sato A (2009) Influence of growth regulators in biomass production and volatile profile of in vitro plantlets of Thymus vulgaris L. J Agr Food Chem 57:6392–6395

    Article  CAS  Google Scholar 

  142. Grzegorczyk-Karolak I, Kuźma Ł, Wysokińska H (2015) The effect of cytokinins on shoot proliferation, secondary metabolite production and antioxidant potential in shoot cultures of Scutellaria alpina. Plant Cell Tiss Organ Cult 122:699–708

    Article  CAS  Google Scholar 

  143. Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult 106:279–288

    Article  CAS  Google Scholar 

  144. Zielińska S, Piątczak E, Kalemba D, Matkowski A (2011) Influence of plant growth regulators on volatiles produced by in vitro grown shoots of Agastache rugosa (Fischer & CA Meyer) O. Kuntze. Plant Cell Tiss Organ Cult 107:161–167. https://doi.org/10.1007/s11240-011-9954-2

    Article  CAS  Google Scholar 

  145. El-Keltawi NE, Croteau R (1987) Influence of foliar applied cytokinins on growth and essential oil content of several members of the Lamiaceae. Phytochemistry 26:891–895

    Article  CAS  Google Scholar 

  146. Fraternale D, Giamperi L, Ricci D, Rocchi MBL, Guidi L, Epifano F, Marcotullio FC (2003) The effect of triacontanol on micropropagation and on secretory system of Thymus mastichina. Plant Cell Tiss Organ Cult 74:87–97

    Article  CAS  Google Scholar 

  147. Aharoni A, Galili G (2011) Metabolic engineering of the plant primary-secondary metabolism interface. Curr Opin Biotechnol 22:239–244

    Article  CAS  PubMed  Google Scholar 

  148. Gurel E, Yucesan B, Aglic E, Gurel S, Verma SK, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tiss Organ Cult 104:217–225

    Article  CAS  Google Scholar 

  149. Bakhtiar Z, Mirjalili MH, Sonboli A, Moridi Farimani M, Ayyari M (2014) In vitro propagation, genetic and phytochemical assessment of Thymus persicus – a medicinally important source of pentacyclic triterpenoids. Biologia 69:594–603

    Article  CAS  Google Scholar 

  150. Brutti CB, Rubio EJ, Llorente BE, Apostolo NM (2002) Artichoke leaf morphology and surface features in different micropropagation stages. Biol Plant 45:197–204

    Article  Google Scholar 

  151. Bandyopadhyay T, Gangopadhyay G, Poddar R, Mukherjee KK (2004) Trichomes: their diversity distribution and density in acclimatization of teak (Tectona grandis L.) plants grown in vitro. Plant Cell Tiss Organ Cult 78:113–121

    Article  Google Scholar 

  152. Kim TD, Lee BS, Kim TS, Choi YE (2007) Developmental plasticity of glandular trichomes into somatic embryogenesis in Tilia amurensis. Ann Bot 100:177–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Rosa YBCJ, Dornelas MC (2012) In vitro plant regeneration and de novo differentiation of secretory trichomes in Passiflora foetida L. (Passifloraceae). Plant Cell Tiss Organ Cult 108:91–99

    Article  CAS  Google Scholar 

  154. Pospíšilová J, Wilhelmová N, Synková H, Čatský J, Krebs D, Tichá I, Hanáčková B, Snopek J (1998) Acclimation of tobacco plantlets to ex vitro conditions as affected by application of abscisic acid. J Exp Bot 49:863–869

    Article  Google Scholar 

  155. Pospíšilová J, Tichá I, Kadleček P, Haisel D, Plzáková Š (1999) Acclimatization of micropropagated plants to ex vitro conditions. Biol Plant 45:481–497

    Article  Google Scholar 

  156. Donnelly DJ, Skelton FE, Daubeny HA (1986) External leaf features of tissue-cultured Silvan blackberry. HortSci 21:306–308

    Google Scholar 

  157. Lucchesini M, Monteforti G, Mensuali-Sodi A, Serra G (2006) Leaf ultrastructure, photosynthetic rate and growth of myrtle plantlets under different in vitro culture conditions. Biol Plant 50:161–168

    Article  Google Scholar 

  158. Radochová B, Tichá I (2009) Leaf anatomy during leaf development of photoautotrophically in vitro-grown tobacco plants as affected by growth irradiance. Biol Plant 53:21–27

    Article  Google Scholar 

  159. Juliani HR Jr, Koroch AR, Juliani HR, Trippi VS (1999) Micropropagation of Lippia junelliana (Mold.) Tronc. Plant Cell Tiss Organ Cult 59:175–179

    Article  Google Scholar 

  160. Rout GR, Samantaray S, Das P (2000) In vitro manipulation and propagation of medicinal plants. Biotechnol Adv 18:91–120

    Article  CAS  PubMed  Google Scholar 

  161. Saha S, Kader A, Sengupta C, Ghosh P (2012) In vitro propagation of Ocimum gratissimum L. (Lamiaceae) and its evaluation of genetic fidelity using RAPD marker. Am J Plant Sci 3:64–74

    Article  CAS  Google Scholar 

  162. Kalemba D, Thiem B (2004) Constituents of the essential oils of four micropropagated Solidago species. Flavour Frag J 19:40–43

    Article  CAS  Google Scholar 

  163. Collin HA (2001) Secondary product formation in plant tissue cultures. Plant Growth Regul 34:119–134

    Article  CAS  Google Scholar 

  164. Miedzybrodzka MBW, Yeoman MM (1992) Effect of culture origin and conditions on duvatrienediol accumulation in shoot cultures of tobacco. J Exp Bot 43:1419–1427

    Article  CAS  Google Scholar 

  165. Bassolino L, Giacomelli E, Giovanelli S, Pistelli L, Casetti A, Damonte G, Bisio A, Ruffoni B (2015) Tissue culture and aromatic profile in Salvia dolomitica Codd. Plant Cell Tiss Organ Cult 121:83–95

    Article  CAS  Google Scholar 

  166. Makowczyńska J, Sliwinska E, Kalemba D, Piątczak E, Wysokińska H (2016) In vitro propagation, DNA content and essential oil composition of Teucrium scorodonia L. ssp. scorodonia. Plant Cell Tiss Organ Cult 127:1–13

    Article  CAS  Google Scholar 

  167. Croteau R, Felton M, Karp F, Kjonaas R (1981) Relationship of camphor biosynthesis to leaf development in sage (Salvia officinalis). Plant Physiol 67:820–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant № 173015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Branka Uzelac .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Uzelac, B., Stojičić, D., Budimir, S. (2020). Glandular Trichomes on the Leaves of Nicotiana tabacum: Morphology, Developmental Ultrastructure, and Secondary Metabolites. In: Ramawat, K., Ekiert, H., Goyal, S. (eds) Plant Cell and Tissue Differentiation and Secondary Metabolites. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-11253-0_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11253-0_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11253-0

  • Online ISBN: 978-3-030-11253-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics