Skip to main content

Visible Light-Driven Photocatalysts for Environmental Applications Based on Graphitic Carbon Nitride

  • Living reference work entry
  • First Online:
Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications

Abstract

With the fast growth of the world population, advancement in living standards and rapid and uncontrolled development in industries have led to unstoppable release of organic, inorganic, and toxic industrial waste containing nonbiodegradable pollutants into the water system. Therefore, above pollutants in freshwater resulted in an environmental issue due to its detrimental effect on human health. Great efforts have been done in order to solve the industrial and environmental problems faced at global scale. Photocatalysis, a green and promising alternative approach, has attracted worldwide scientific interest due to complete degradation of pollutant. Graphitic carbon nitride (g-C3N4) has attracted growing attention due to its fascinating properties, such as nontoxicity, low-cost fabrication, promising electronic band structure, and high thermal and chemical stability as well as visible light harvesting property. However, the photocatalytic performance of bulk g-C3N4 is limited at practical level due to its rapid recombination and delay in the transfer of photogenerated charge carriers. To overcome the innate problems and enhanced the photocatalytic performance of bulk g-C3N4, different methods have been applied. Among all designing a heterojunction semiconductor is a powerful approach to extend the photoresponsive range into visible region as well as promote the charge separation and transfer for enhancing the photocatalytic activity. Therefore, this chapter explores and summarizes the effective approach to construct the heterojunction for photocatalytic water treatment. Overall, it also assumes that this chapter will encourage further research and will open up new possibilities to construct new heterojunctions with g-C3N4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J (2012) Nano-photocatalytic materials: possibilities and challenges. Adv Mater 24:229–251. https://doi.org/10.1002/adma.201102752

    Article  CAS  Google Scholar 

  2. Cui C, Wang Y, Liang D, Cui W, Hu H, Lu B, Xu S, Li X, Wang C, Yang Y (2014) Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light. Appl Catal B Environ 158–159:150–160. https://doi.org/10.1016/j.apcatb.2014.04.007

    Article  CAS  Google Scholar 

  3. Raza W, Khan A, Alam U, Muneer M, Bahnemann D (2016) Facile fabrication of visible light induced Bi2O3 nanorod using conventional heat treatment method. J Mol Struct 1107:39–46. https://doi.org/10.1016/j.molstruc.2015.11.014

    Article  CAS  Google Scholar 

  4. Raza W, Haque MM, Muneer M, Harada T, Matsumura M (2015) Synthesis, characterization and photocatalytic performance of visible light induced bismuth oxide nanoparticle. J Alloys Compd 648:641–650. https://doi.org/10.1016/j.jallcom.2015.06.245

    Article  CAS  Google Scholar 

  5. Raza W, Bahnemann D, Muneer M (2018) A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide. Catal Today 300:89–98. https://doi.org/10.1016/J.CATTOD.2017.07.029

    Article  CAS  Google Scholar 

  6. Raza W, Haque MM, Muneer M, Fleisch M, Hakki A, Bahnemann D (2015) Photocatalytic degradation of different chromophoric dyes in aqueous phase using La and Mo doped TiO2 hybrid carbon spheres. J Alloys Compd 632:837–844. https://doi.org/10.1016/j.jallcom.2015.01.222

    Article  CAS  Google Scholar 

  7. Raza W, Haque MMM, Muneer M, Bahnemann D (2015) Synthesis of visible light driven TiO2 coated carbon nanospheres for degradation of dyes. Arab J Chem. https://doi.org/10.1016/j.arabjc.2015.09.002

  8. Raza W, Faraz M (2019) Photocatalytic dye degradation using modified titania. In: Advanced functional textiles and polymers: fabrication, processing and applications. Wiley, Hoboken, pp 171–199. https://doi.org/10.1002/9781119605843.ch7

    Chapter  Google Scholar 

  9. Haque MM, Raza W, Khan A, Muneer M (2014) Heterogeneous photocatalyzed degradation of barbituric acid and matrinidazole under visible light induced Ni, Mn, Mo and La-doped TiO2. J Nanoeng Nanomanufacturing 4:135–139. https://doi.org/10.1166/jnan.2014.1182

    Article  CAS  Google Scholar 

  10. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2009) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80. https://doi.org/10.1038/nmat2317

    Article  CAS  Google Scholar 

  11. Martin DJ, Qiu K, Shevlin SA, Handoko AD, Chen X, Guo Z, Tang J (2014) Highly efficient photocatalytic H2 evolution from water using visible light and structure-controlled graphitic carbon nitride. Angew Chemie – Int Ed 53:9240–9245. https://doi.org/10.1002/anie.201403375

    Article  CAS  Google Scholar 

  12. Zhou L, Zhang H, Sun H, Liu S, Tade MO, Wang S, Jin W (2016) Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Cat Sci Technol 6:7002–7023. https://doi.org/10.1039/c6cy01195k

    Article  CAS  Google Scholar 

  13. Zhang S, Gu P, Ma R, Luo C, Wen T, Zhao G, Cheng W, Wang X (2019) Recent developments in fabrication and structure regulation of visible-light-driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal Today 335:65–77. https://doi.org/10.1016/j.cattod.2018.09.013

    Article  CAS  Google Scholar 

  14. Wang S, Li D, Sun C, Yang S, Guan Y, He H (2014) Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl Catal B Environ 144:885–892. https://doi.org/10.1016/j.apcatb.2013.08.008

    Article  CAS  Google Scholar 

  15. Liebig J (1834) Uber einige Stickstoff – Verbindungen. Ann Der Pharm 10:1–47. https://doi.org/10.1002/jlac.18340100102

    Article  Google Scholar 

  16. Franklin EC (1922) The ammono carbonic acids. J Am Chem Soc 44:486–509. https://doi.org/10.1021/ja01424a007

    Article  CAS  Google Scholar 

  17. Naseri A, Samadi M, Pourjavadi A, Moshfegh AZ, Ramakrishna S (2017) Graphitic carbon nitride (g-C3N4)-based photocatalysts for solar hydrogen generation: recent advances and future development directions. J Mater Chem A 5:23406–23433. https://doi.org/10.1039/c7ta05131j

    Article  CAS  Google Scholar 

  18. Kim M, Hwang S, Yu JS (2007) Novel ordered nanoporous graphitic C3N4 as a support for Pt-Ru anode catalyst in direct methanol fuel cell. J Mater Chem 17:1656–1659. https://doi.org/10.1039/b702213a

    Article  CAS  Google Scholar 

  19. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C3N4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B Environ 198:347–377. https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  CAS  Google Scholar 

  20. Zhou C, Lai C, Huang D, Zeng G, Zhang C, Cheng M, Hu L, Wan J, Xiong W, Wen M, Wen X, Qin L (2018) Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl Catal B Environ 220:202–210. https://doi.org/10.1016/j.apcatb.2017.08.055

    Article  CAS  Google Scholar 

  21. Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM (2009) Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci 2:1231–1257. https://doi.org/10.1039/b907933e

    Article  CAS  Google Scholar 

  22. Yan SC, Lv SB, Li ZS, Zou ZG (2010) Organic-inorganic composite photocatalyst of g-C3N4 and TaON with improved visible light photocatalytic activities. Dalton Trans 39:1488–1491. https://doi.org/10.1039/b914110c

    Article  CAS  Google Scholar 

  23. Raza W, Bahnemann D, Muneer M (2017) Efficient visible light driven, mesoporous graphitic carbon nitride based hybrid nanocomposite: with superior photocatalytic activity for degradation of organic pollutant in aqueous phase. J Photochem Photobiol A Chem 342:102–115. https://doi.org/10.1016/j.jphotochem.2017.03.036

    Article  CAS  Google Scholar 

  24. Yong X, Schoonen MAA (2000) The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am Mineral 85:543–556. https://doi.org/10.2138/am-2000-0416

    Article  Google Scholar 

  25. Raza W, Faisal SM, Owais M, Bahnemann D, Muneer M (2016) Facile fabrication of highly efficient modified ZnO photocatalyst with enhanced photocatalytic, antibacterial and anticancer activity. RSC Adv 6:78335–78350. https://doi.org/10.1039/c6ra06774c

    Article  CAS  Google Scholar 

  26. Raza W, Haque MM, Muneer M (2014) Synthesis of visible light driven ZnO: characterization and photocatalytic performance. Appl Surf Sci 322:215–224. https://doi.org/10.1016/j.apsusc.2014.10.067

    Article  CAS  Google Scholar 

  27. Raza W, Ahmad K (2018) A highly selective Fe@ZnO modified disposable screen printed electrode based non-enzymatic glucose sensor (SPE/Fe@ZnO). Mater Lett 212:231–234. https://doi.org/10.1016/j.matlet.2017.10.100

    Article  CAS  Google Scholar 

  28. Wan Z, Zhang G, Wu X, Yin S (2017) Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Appl Catal B Environ 207:17–26. https://doi.org/10.1016/j.apcatb.2017.02.014

    Article  CAS  Google Scholar 

  29. Zhang S, Li J, Zeng M, Zhao G, Xu J, Hu W, Wang X (2013) In situ synthesis of water-soluble magnetic graphitic carbon nitride photocatalyst and its synergistic catalytic performance. ACS Appl Mater Interfaces 5:12735–12743. https://doi.org/10.1021/am404123z

    Article  CAS  Google Scholar 

  30. Wang J, Zhang C, Shen Y, Zhou Z, Yu J, Li Y, Wei W, Liu S, Zhang Y (2015) Environment-friendly preparation of porous graphite-phase polymeric carbon nitride using calcium carbonate as templates, and enhanced photoelectrochemical activity. J Mater Chem A 3:5126–5131. https://doi.org/10.1039/c4ta06778a

    Article  CAS  Google Scholar 

  31. Wang Z, Guan W, Sun Y, Dong F, Zhou Y, Ho WK (2015) Water-assisted production of honeycomb-like g-C3N4with ultralong carrier lifetime and outstanding photocatalytic activity. Nanoscale 7:2471–2479. https://doi.org/10.1039/c4nr05732e

    Article  CAS  Google Scholar 

  32. Yang Z, Zhang Y, Schnepp Z (2015) Soft and hard templating of graphitic carbon nitride. J Mater Chem A 3:14081–14092. https://doi.org/10.1039/c5ta02156a

    Article  CAS  Google Scholar 

  33. Jun Y-S, Hong WH, Antonietti M, Thomas A (2009) Mesoporous, 2D hexagonal carbon nitride and titanium nitride/carbon composites. Adv Mater 21:4270–4274. https://doi.org/10.1002/adma.200803500

    Article  CAS  Google Scholar 

  34. Zheng Y, Liu J, Liang J, Jaroniec M, Qiao SZ (2012) Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ Sci 5:6717–6731. https://doi.org/10.1039/c2ee03479d

    Article  CAS  Google Scholar 

  35. Lin Z, Wang X (2014) Ionic liquid promoted synthesis of conjugated carbon nitride photocatalysts from urea. ChemSusChem 7:1547–1550. https://doi.org/10.1002/cssc.201400016

    Article  CAS  Google Scholar 

  36. Zheng D, Pang C, Liu Y, Wang X (2015) Shell-engineering of hollow g-C3N4 nanospheres via copolymerization for photocatalytic hydrogen evolution. Chem Commun 51:9706–9709. https://doi.org/10.1039/c5cc03143e

    Article  CAS  Google Scholar 

  37. Cheng F, Wang H, Dong X (2015) The amphoteric properties of g-C3N4 nanosheets and fabrication of their relevant heterostructure photocatalysts by an electrostatic re-assembly route. Chem Commun 51:7176–7179. https://doi.org/10.1039/c5cc01035g

    Article  CAS  Google Scholar 

  38. Bai X, Wang L, Zong R, Zhu Y (2013) Photocatalytic activity enhanced via g-C3N4 nanoplates to nanorods. J Phys Chem C 117:9952–9961. https://doi.org/10.1021/jp402062d

    Article  CAS  Google Scholar 

  39. Zheng D, Huang C, Wang X (2015) Post-annealing reinforced hollow carbon nitride nanospheres for hydrogen photosynthesis. Nanoscale 7:465–470. https://doi.org/10.1039/c4nr06011c

    Article  CAS  Google Scholar 

  40. Chen Y, Zhang J, Wang X (2013) Molecular and textural engineering of conjugated carbon nitride catalysts for selective oxidation of alcohols with visible light. Chem Sci 4:3244–3248. https://doi.org/10.1039/c3sc51203g

    Article  CAS  Google Scholar 

  41. Wang Y, Di Y, Antonietti M, Li H, Chen X, Wang X (2010) Excellent visible-light photocatalysis of fluorinated polymeric carbon nitride solids. Chem Mater 22:5119–5121. https://doi.org/10.1021/cm1019102

    Article  CAS  Google Scholar 

  42. Wang Y, Li H, Yao J, Wang X, Antonietti M (2011) Synthesis of boron doped polymeric carbon nitride solids and their use as metal-free catalysts for aliphatic C–H bond oxidation. Chem Sci 2:446–450. https://doi.org/10.1039/c0sc00475h

    Article  CAS  Google Scholar 

  43. Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y (2012) A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116:23485–23493. https://doi.org/10.1021/jp308334x

    Article  CAS  Google Scholar 

  44. Zhang Y, Mori T, Ye J, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132:6294–6295. https://doi.org/10.1021/ja101749y

    Article  CAS  Google Scholar 

  45. Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X (2014) Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv Mater 26:805–809. https://doi.org/10.1002/adma.201303611

    Article  CAS  Google Scholar 

  46. Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng HM (2010) Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J Am Chem Soc 132:11642–11648. https://doi.org/10.1021/ja103798k

    Article  CAS  Google Scholar 

  47. Ge L, Han C, Liu J, Li Y (2011) Enhanced visible light photocatalytic activity of novel polymeric g-C3N4 loaded with Ag nanoparticles. Appl Catal A Gen 409–410:215–222. https://doi.org/10.1016/j.apcata.2011.10.006

    Article  CAS  Google Scholar 

  48. Jiang D, Chen L, Xie J, Chen M (2014) Ag2S/g-C3N4 composite photocatalysts for efficient Pt-free hydrogen production: the co-catalyst function of Ag/Ag2S formed by simultaneous photodeposition. Dalton Trans 43:4878–4885. https://doi.org/10.1039/c3dt53526f

    Article  CAS  Google Scholar 

  49. Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066. https://doi.org/10.1039/c5sc04572j

    Article  CAS  Google Scholar 

  50. Samanta S, Martha S, Parida K (2014) Facile synthesis of Au/g-C3N4 nanocomposites: an inorganic/organic hybrid plasmonic photocatalyst with enhanced hydrogen gas evolution under visible-light irradiation. ChemCatChem 6. https://doi.org/10.1002/cctc.201300949

  51. Ikeda T, Xiong A, Yoshinaga T, Maeda K, Domen K, Teranishi T (2013) Polyol synthesis of size-controlled Rh nanoparticles and their application to photocatalytic overall water splitting under visible light. J Phys Chem C 117:2467–2473. https://doi.org/10.1021/jp305968u

    Article  CAS  Google Scholar 

  52. Li XH, Wang X, Antonietti M (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3:2170–2174. https://doi.org/10.1039/c2sc20289a

    Article  CAS  Google Scholar 

  53. Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L (2013) Photodegradation of bisphenol a by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Appl Catal B Environ 142–143:553–560. https://doi.org/10.1016/j.apcatb.2013.05.044

    Article  CAS  Google Scholar 

  54. Cheng R, Zhang L, Fan X, Wang M, Li M, Shi J (2016) One-step construction of FeOx modified g-C3N4 for largely enhanced visible-light photocatalytic hydrogen evolution. Carbon N Y 101:62–70. https://doi.org/10.1016/j.carbon.2016.01.070

    Article  CAS  Google Scholar 

  55. Zhang G, Zang S, Wang X (2015) Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal 5:941–947. https://doi.org/10.1021/cs502002u

    Article  CAS  Google Scholar 

  56. Chen X, Zhang J, Fu X, Antonietti M, Wang X (2009) Fe-g-C3N4-catalyzed oxidation of benzene to phenol using hydrogen peroxide and visible light. J Am Chem Soc 131:11658–11659. https://doi.org/10.1021/ja903923s

    Article  CAS  Google Scholar 

  57. Huang H, Xiao K, He Y, Zhang T, Dong F, Du X, Zhang Y (2016) In situ assembly of BiOI@Bi12O17Cl2 p-n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl Catal B Environ 199:75–86. https://doi.org/10.1016/j.apcatb.2016.06.020

    Article  CAS  Google Scholar 

  58. Huang H, Han X, Li X, Wang S, Chu PK, Zhang Y (2015) Fabrication of multiple heterojunctions with tunable visible-light-active photocatalytic reactivity in BiOBr-BiOI full-range composites based on microstructure modulation and band structures. ACS Appl Mater Interfaces 7:482–492. https://doi.org/10.1021/am5065409

    Article  CAS  Google Scholar 

  59. Herrmann JM (1999) Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catal Today 53:115–129. https://doi.org/10.1016/S0920-5861(99)00107-8

    Article  CAS  Google Scholar 

  60. Patnaik S, Martha S, Parida KM (2016) An overview of the structural, textural and morphological modulations of g-C3N4 towards photocatalytic hydrogen production. RSC Adv 6:46929–46951. https://doi.org/10.1039/c5ra26702a

    Article  CAS  Google Scholar 

  61. Sun JX, Yuan YP, Qiu LG, Jiang X, Xie AJ, Shen YH, Zhu JF (2012) Fabrication of composite photocatalyst g-C3N4-ZnO and enhancement of photocatalytic activity under visible light. Dalton Trans 41:6756–6763. https://doi.org/10.1039/c2dt12474b

    Article  CAS  Google Scholar 

  62. Yan H, Yang H (2011) TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloys Compd 509:L26–L29. https://doi.org/10.1016/j.jallcom.2010.09.201

    Article  CAS  Google Scholar 

  63. Wei H, McMaster WA, Tan JZY, Cao L, Chen D, Caruso RA (2017) Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity. J Phys Chem C 121:22114–22122. https://doi.org/10.1021/acs.jpcc.7b06493

    Article  CAS  Google Scholar 

  64. Reli M, Huo P, Šihor M, Ambrožová N, Troppová I, Matějová L, Lang J, Svoboda L, Kuśtrowski P, Ritz M, Praus P, Kočí K (2016) Novel TiO2/C3N4 photocatalysts for photocatalytic reduction of CO2 and for photocatalytic decomposition of N2O. J Phys Chem A 120:8564–8573. https://doi.org/10.1021/acs.jpca.6b07236

    Article  CAS  Google Scholar 

  65. Sun L, Zhao X, Jia CJ, Zhou Y, Cheng X, Li P, Liu L, Fan W (2012) Enhanced visible-light photocatalytic activity of g-C3N4-ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J Mater Chem 22:23428–23438. https://doi.org/10.1039/c2jm34965e

    Article  CAS  Google Scholar 

  66. Li J, Zhou M, Ye Z, Wang H, Ma C, Huo P, Yan Y (2015) Enhanced photocatalytic activity of g-C3N4-ZnO/HNT composite heterostructure photocatalysts for degradation of tetracycline under visible light irradiation. RSC Adv 5:91177–91189. https://doi.org/10.1039/c5ra17360d

    Article  CAS  Google Scholar 

  67. Yin R, Luo Q, Wang D, Sun H, Li Y, Li X, An J (2014) SnO2/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity. J Mater Sci 49:6067–6073. https://doi.org/10.1007/s10853-014-8330-0

    Article  CAS  Google Scholar 

  68. Huang L, Li Y, Xu H, Xu Y, Xia J, Wang K, Li H, Cheng X (2013) Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Adv 3:22269–22279. https://doi.org/10.1039/c3ra42712a

    Article  CAS  Google Scholar 

  69. Wang Y, Sun J, Li J, Zhao X (2017) Electrospinning preparation of nanostructured g-C3N4/BiVO4 composite films with an enhanced photoelectrochemical performance. Langmuir 33:4694–4701. https://doi.org/10.1021/acs.langmuir.7b00893

    Article  CAS  Google Scholar 

  70. Pu YC, Fan HC, Liu TW, Chen JW (2017) Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. J Mater Chem A 5:25438–25449. https://doi.org/10.1039/c7ta08190a

    Article  CAS  Google Scholar 

  71. Wang J, Tang L, Zeng G, Liu Y, Zhou Y, Deng Y, Wang J, Peng B (2017) Plasmonic Bi metal deposition and g-C3N4 coating on Bi2WO6 microspheres for efficient visible-light photocatalysis. ACS Sustain Chem Eng 5:1062–1072. https://doi.org/10.1021/acssuschemeng.6b02351

    Article  CAS  Google Scholar 

  72. Jiang D, Li J, Xing C, Zhang Z, Meng S, Chen M (2015) Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS Appl Mater Interfaces 7:19234–19242. https://doi.org/10.1021/acsami.5b05118

    Article  CAS  Google Scholar 

  73. Xu K, Feng J (2017) Superior photocatalytic performance of LaFeO3/g-C3N4 heterojunction nanocomposites under visible light irradiation. RSC Adv 7:45369–45376. https://doi.org/10.1039/c7ra08715b

    Article  CAS  Google Scholar 

  74. He Y, Zhang L, Teng B, Fan M (2015) New application of Z-scheme Ag3PO4/g-C3N4 composite in converting CO2 to fuel. Environ Sci Technol 49:649–656. https://doi.org/10.1021/es5046309

    Article  CAS  Google Scholar 

  75. Wang Q, Guan S, Li B (2017) 2D graphitic-C3N4 hybridized with 1D flux-grown Na-modified K2Ti6O13 nanobelts for enhanced simulated sunlight and visible-light photocatalytic performance. Cat Sci Technol 7:4064–4078. https://doi.org/10.1039/c7cy01134b

    Article  CAS  Google Scholar 

  76. Jiang D, Xiao P, Shao L, Li D, Chen M (2017) RGO-promoted all-solid-state g-C3N4/BiVO4 Z-scheme heterostructure with enhanced photocatalytic activity toward the degradation of antibiotics. Ind Eng Chem Res 56:8823–8832. https://doi.org/10.1021/acs.iecr.7b01840

    Article  CAS  Google Scholar 

  77. Zhao X, Yu J, Cui H, Wang T (2017) Preparation of direct Z-scheme Bi2Sn2O7/g-C3N4 composite with enhanced photocatalytic performance. J Photochem Photobiol A Chem 335:130–139. https://doi.org/10.1016/j.jphotochem.2016.11.011

    Article  CAS  Google Scholar 

  78. He Y, Zhang L, Wang X, Wu Y, Lin H, Zhao L, Weng W, Wan H, Fan M (2014) Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3–g-C3N4 composite under visible light irradiation. RSC Adv 4:13610–13619. https://doi.org/10.1039/c4ra00693c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem Raza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Raza, W., Ahmad, K. (2020). Visible Light-Driven Photocatalysts for Environmental Applications Based on Graphitic Carbon Nitride. In: Kharissova, O., Martínez, L., Kharisov, B. (eds) Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-11155-7_200-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-11155-7_200-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-11155-7

  • Online ISBN: 978-3-030-11155-7

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics