Skip to main content

Future Breeding Strategies

  • Chapter
  • First Online:
The Pear Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 894 Accesses

Abstract

Pear breeding is considered as one of the most important sectors of temperate fruit breeding. While this follows breeding efforts for apple, new technologies and approaches are awaiting pear breeders on the horizon. New plant breeding techniques, tested for their efficacy in other fruit trees, as well as conventional methods will be presented in this chapter. Moreover, the potential combination of these approaches toward development of ‘smart’ pear cultivars will be also described. Furthermore, as there is an observed trend of elevated consciousness of the health benefits of organically grown crops among consumers worldwide, the issue of organic pear breeding strategies pear will also be discussed. Based on the principles of organic plant breeding, any breeding technique is evaluated against four mandatory criteria, and must meet genome- and cell-level integrity, capability for propagation, as well as preservation against crossing barriers. Thus, the use of molecular markers as diagnostic tools is not excluded in organic breeding. For future pear breeding strategies, the merger of different ‘omics’ technologies will provide holistic approaches for discovery of gene function, elucidate mechanisms of gene function, support genotyping, and accelerate the breeding cycle. Furthermore, nanotechnologies utilized in gene transfer, phenotyping, detection of pathogens, and sequencing will also contribute to faster, more precise and specific high-quality monitoring, and consequently breeding of cultivars resistant to biotic and abiotic stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd-Elsalam KA, Alghuthaymi MA (2015) Nanodiagnostic tools in plant breeding. J Nanotech Mater Sci 2(2):1–2

    Google Scholar 

  • Araki M, Ishii T (2015) Towards social acceptance of plant breeding by genome editing. Trends Plant Sci 20:145–149

    Article  CAS  PubMed  Google Scholar 

  • Bangerth KF (2009) Flower induction in mature, perennial angiosperm fruit trees: similarities and discrepancies with annual/biennial plants and the involvement of plant hormones. Sci Hortic 122:153–163. https://doi.org/10.1016/j.scienta.2009.06.014

    Article  CAS  Google Scholar 

  • Bokszczanin K, Przybyla A, Schollenberger M, Gozdowski D, Madry W, Odziemkowski S (2012) Inheritance of fire blight resistance in Asian Pyrus species. Open J Genet 2:109–120. https://doi.org/10.4236/ojgen.2012.22016

    Article  Google Scholar 

  • Bokszczanin KL, Solanaceae Pollen Thermotolerance Initial Training Network (SPOT-ITN) Consortium, Fragkostefanakis S (2013) Perspectives on deciphering mechanisms underlying plant heat stress response and thermotolerance. Front Plant Sci 4:315. https://doi.org/10.3389/fpls.2013.00315

    Article  PubMed  PubMed Central  Google Scholar 

  • Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broertjes C (1982) Significance of in vitro adventitious bud techniques for mutation breeding of vegetatively propagated crops. In: Induced mutations in vegetatively propagated plants, II. International Atomic Energy Agency, Wien, pp 1–9

    Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221. https://doi.org/10.1016/j.pbi.2008.01.002

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Decourtye L (1982) Bilancio di 20 anni di miglioramento delle specie legnose da frutto mediante la mutagenesi e prospettive attuali. In: Atti della giornata di studio sull’uso di tecniche nucleari per il miglioramento genetico dei fruttiferi, Roma, pp 21–40

    Google Scholar 

  • Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG, Carnevali P, Nazarenko I, Nilsen GB, Yeung G, Dahl F, Fernandez A, Staker B, Pant KP, Baccash J, Borcherding AP, Brownley A, Cedeno R, Chen L, Chernikoff D, Cheung A, Chirita R, Curson B, Ebert JC, Hacker CR, Hartlage R, Hauser B, Huang S, Jiang Y, Karpinchyk V, Koenig M, Kong C, Landers T, Le C, Liu J, McBride CE, Morenzoni M, Morey RE, Mutch K, Perazich H, Perry K, Peters BA, Peterson J, Pethiyagoda CL, Pothuraju K, Richter C, Rosenbaum AM, Roy S, Shafto J, Sharanhovich U, Shannon KW, Sheppy CG, Sun M, Thakuria JV, Tran A, Vu D, Zaranek AW, Wu X, Drmanac S, Oliphant AR, Banyai WC, Martin B, Ballinger DG, Church GM, Reid CA (2010) Human genome sequencing using unchained base reads on self-assembling DNA nanoarrays. Science 327:78–81. https://doi.org/10.1126/science.1181498

    Article  CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B, Bibillo A, Bjornson K, Chaudhuri B, Christians F, Cicero R, Clark S, Dalal R, Dewinter A, Dixon J, Foquet M, Gaertner A, Hardenbol P, Heiner C, Hester K, Holden D, Kearns G, Kong X, Kuse R, Lacroix Y, Lin S, Lundquist P, Ma C, Marks P, Maxham M, Murphy D, Park I, Pham T, Phillips M, Roy J, Sebra R, Shen G, Sorenson J, Tomaney A, Travers K, Trulson M, Vieceli J, Wegener J, Wu D, Yang A, Zaccarin D, Zhao P, Zhong F, Korlach J, Turner S (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  • English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC, Gibbs RA (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE 7:e47768. https://doi.org/10.1371/journal.pone.0047768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • European Consortium for Organic Plant Breeding (ECO-PB) (2012) Position paper on organic plant breeding. ECO-PB, Frankfurt, Germany

    Google Scholar 

  • Flachowsky H, Le Roux PM, Peil A, Patocchi A, Richter K, Hanke MV (2011) Application of a high-speed breeding technology to apple (Malus × domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377. https://doi.org/10.1111/j.1469-8137.2011.03813.x

    Article  CAS  PubMed  Google Scholar 

  • Fujimaki H (1996) Tangency of artificial mutation to recombinant-DNA in plant breeding. In: Gamma field symposia: the tangency of mutation induction and genetic engineering in plant breeding, vol 35, pp 1–4. Institute of Radiation Breeding NIAR MAFF, Ibaraki, Japan

    Google Scholar 

  • Gallusci P, Hodgman C, Teyssier E, Seymour GB (2016) DNA methylation and chromatin regulation during fleshy fruit development and ripening. Front Plant Sci 7:807. https://doi.org/10.3389/fpls.2016.00807

    Article  PubMed  PubMed Central  Google Scholar 

  • Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R, Mulembakani P, Schneider BS, Muyembe-Tamfum JJ, Stramer SL, Chiu CY (2015) Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:99. https://doi.org/10.1186/s13073-015-0220-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Ma Z, Zhang Z, Cheng L, Zhang X, Li T (2017) Small RNA-sequencing links physiological changes and RdDM process to vegetative-to-floral transition in apple. Front Plant Sci 8:873. https://doi.org/10.3389/fpls.2017.00873

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2008) Array-based high-throughput DNA markers for crop improvement. Heredity 101:5–18

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    Article  CAS  PubMed  Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol J 11(4):395–407. https://doi.org/10.1111/pbi.12055

    Article  CAS  PubMed  Google Scholar 

  • Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416. https://doi.org/10.1016/j.virol.2009.01.039

    Article  CAS  PubMed  Google Scholar 

  • International Federation of Organic Agriculture Movements (IFOAM) (2014) The IFOAM Norms. IFOAM, Bonn, Germany

    Google Scholar 

  • Iwata H, Hayashi T, Terakami S, Takada N, Sawamura Y, Yamamoto T (2013) Potential assessment of genome-wide association study and genomic selection in Japanese pear Pyrus pyrifolia. Breed Sci 63:125–140. https://doi.org/10.1270/jsbbs.63.125

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalantidis K (2004) Grafting the way to the systemic silencing signal in plants. PLoS Biol 2:1059–1061

    Article  CAS  Google Scholar 

  • Khiyami MA, Almoammar H, Awad YM, Alghuthaymi MA, Abd-Elsalam KA (2014) Plant pathogen nanodiagnostic techniques: forthcoming changes? Biotechnol Biotechnol Equip 28:775–785

    Article  PubMed  PubMed Central  Google Scholar 

  • Kishigami R, Yamagishi N, Ito T, Yoshikawa N (2014) Detection of apple latent spherical virus in seeds PCR and seedlings from infected apple trees by reverse transcription quantitative sequencing deep: evidence for lack of transmission of the virus to most progeny seedlings. J Gen Plant Pathol 80:490–498. https://doi.org/10.1007/s10327-014-0541-3

    Article  CAS  Google Scholar 

  • Kitagawa K, Nagara M, Uchida M, Inoue K, Murata K, Masuda T, Yoshioka T, Kotobuki K (1999) A new Japanese pear cultivar ‘Kotobuki Shinsui’. Bull Tottori Hortic Exp Stn 3:1–13

    Google Scholar 

  • Kost TD, Gessler C, Jänsch M, Flachowsky H, Patocchi A, Broggini GAL (2015) Development of the first cisgenic apple with increased resistance to fire blight. PLoS ONE 10(12):e0143980. https://doi.org/10.1371/journal.pone.0143980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotobuki K, Sanada T, Nishida T, Fujita H, Ikeda F (1992) ‘Gold Nijisseiki’, a new Japanese pear cultivar resistant to black spot disease induced by chronic irradiation of gamma-rays. Bull Nat Inst Agrobiol Resour 7:105–120

    Google Scholar 

  • Kumar S, Chagne D, Bink MC, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS ONE 7:e36674 https://doi.org/10.1371/journal.pone.0036674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Garrick D, Bink M, Whitworth C, Chagne D, Volz R (2013) Novel genomic approaches unravel genetic architecture of complex traits in apple. BMC Genom 14:393. https://doi.org/10.1186/1471-2164-14-393

    Article  CAS  Google Scholar 

  • Lacey CND, Campbell IA (1982) Progress in mutation breeding of apples (Malus pumila Mill.) at Long Ashton Research Station, Bristol, United Kingdom. In: Induced mutations in vegetatively propagated plants, II. International Atomic Energy Agency, Wien, pp 11–28

    Google Scholar 

  • Langridge P, Fleury D (2011) Making the most of ‘omics’ for crop breeding. Trends Biotechnol 29:33–40. https://doi.org/10.1016/j.tibtech.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Limera C, Sabbadini S, Sweet JB, Mezzetti B (2017) New biotechnological tools for the genetic improvement of major woody fruit species. Front Plant Sci 8:1418. https://doi.org/10.3389/fpls.2017.01418

    Article  PubMed  PubMed Central  Google Scholar 

  • Lorenz AJ, Chao S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2011) Genomic selection in plant breeding: Knowledge and prospects. Adv Agron 110:77–123

    Article  Google Scholar 

  • Lu R, Martin-Hernandez AM, Peart JR, Malcuit I, Baulcombe DC (2003) Virus-induced gene silencing in plants. Methods 30:296–303. https://doi.org/10.1016/S1046-2023(03)00037-9

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Viola R, Jung MH, Koo OJ, Kim S, Kim JS, Velasco R, Nagamangala Kanchiswamy C (2016) DNA-free genetically edited grapevine and apple protoplast using CRISPR/Cas9 ribonucleoproteins. Front Plant Sci 7:1904 [PMC free article] [PubMed]

    Google Scholar 

  • Masuda T, Yoshioka T, Inoue K, Murata K, Kitagawa K, Tabira H, Yoshida A, Kotobuki K, Sanada T (1997) Selection of mutants resistant to black spot disease by chronic irradiation of gamma-rays in Japanese pear ‘Osanijisseiki’. J Jpn Soc Hortic Sci 66:85–92

    Article  Google Scholar 

  • Masuda T, Yoshioka T, Sanada T, Kotobuki K, Nagara M, Uchida M, Inoue K, Murata K, Kitagawa K, Yoshida A (1998) A new Japanese pear cultivar ‘Osa Gold’, resistant mutant to the black spot disease of Japanese pear (Pyrus pyrifolia Nakai) induced by chronic irradiation of gamma-rays. Bull Natl Inst Agrobiol Resour 12:1–11

    Google Scholar 

  • Migicovsky Z, Myles S (2017) Exploiting wild relatives for genomics-assisted breeding of perennial crops. Front Plant Sci 8:460. https://doi.org/10.3389/fpls.2017.00460

    Article  PubMed  PubMed Central  Google Scholar 

  • Migicovsky Z, Gardner KM, Money D, Sawler J, Bloom JS, Moffett P, Chao CT, Schwaninger H, Fazio G, Zhong G, Myles S (2016) Genome to phenome mapping in apple using historical data. Plant Genome 9. https://doi.org/10.3835/plantgenome2015.11.0113

    Article  Google Scholar 

  • Nakamura K, Yamagishi N, Isogai M, Komori S, Ito T, Yoshikawa N (2011) Seed and pollen transmission of Apple latent spherical virus in apple. J Gen Plant Pathol 77:48–53. https://doi.org/10.1007/s10327-010-0275-9

    Article  Google Scholar 

  • Nishitani C, Hirai N, Komori S, Wada M, Okada K, Osakabe K, Yamamoto T, Osakabe Y (2016) Efficient genome editing in apple using a CRISPR/Cas9 system. Sci Rep 6(1)

    Google Scholar 

  • Nuijten E, Messmer MM, Lammerts van Bueren ET (2016) Concepts and strategies of organic plant breeding in light of novel breeding techniques. Sustainability 9:18. https://doi.org/10.3390/su9010018

    Article  Google Scholar 

  • Predieri S, Zimmerman RH (2001) Pear mutagenesis: In vitro treatment with gamma-rays and field selection for productivity and fruit traits. Euphytica 117:217. https://doi.org/10.1023/A:1026594103277

    Article  Google Scholar 

  • Przybyla A (1988) Selection of dwarf mutants of apple vegetative rootstocks obtained by gamma irradiation. Hodowla Roślin, Aklimatyzacja i Nasiennictwo 32(1/2):255–260

    Google Scholar 

  • Sanada T, Sagisaka K, Soejima J, Moriguchi T, Teramoto S, Kotobuki K (1994) Inheritance of intermediate resistance to black spot disease in an induced Japanese pear mutant, ‘Gold Nijisseiki’. J Jpn Soc Hortic Sci 62:689–693

    Article  Google Scholar 

  • Sawano I, Suzuki K, Kamata N, Nakajima T, Kuroyanagi E, Taneishi M, Hisada H (2011) Breeding Japanese pear ‘Shizukisui’ with resistance to black spot disease. Bull Shizuoka Res Inst Agr Forest 4:45–49

    Google Scholar 

  • Schaart JG, van de Wiel CCM, Lotz LAP, Smulders MJM (2016) Opportunities for products of new plant breeding techniques. Trends Plant Sci 21:5. https://doi.org/10.1016/j.tplants.2015.11.006

    Article  CAS  Google Scholar 

  • Schlathölter I, Jänsch M, Flachowsky H, Broggini GAL, Hanke MV, Patocchi A (2018) Generation of advanced fire blight-resistant apple (Malus × domestica) selections of the fifth generation within 7 years of applying the early flowering approach. Planta 247(6):1475–1488

    Article  PubMed  PubMed Central  Google Scholar 

  • Sekhon BS (2014) Nanotechnology in agri-food production: an overview. Nanotechnol Sci Appl 7:31–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Smith C, Simpson SP (1986) The use of genetic polymorphisms in livestock improvement. J Anim Breed Genet 103:205–217. https://doi.org/10.1111/j.1439-0388.1986.tb00083.x

    Article  Google Scholar 

  • Song G, Sink KC, Walworth AE, Cook MA, Allison RF, Lang GA (2013) Engineering cherry rootstocks with resis-tance to Prunus necrotic ring spot virus through RNAi-mediated silencing. Plant Biotechnol J 11:702–708

    Article  CAS  PubMed  Google Scholar 

  • Spiegel-Roy P (1990) Economic and agricultural impact of mutation breeding in fruit trees. Mutat Breed Rev 5:1–26

    Google Scholar 

  • Stewart CN Jr (2005) Monitoring the presence and expression of transgenes in living plants. Trends Plant Sci 10(8):390

    Article  CAS  PubMed  Google Scholar 

  • Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45(7–8):587–605

    Article  CAS  PubMed  Google Scholar 

  • Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol 7(7):10. https://doi.org/10.1002/0471142727.mb0710s92

    Article  PubMed  Google Scholar 

  • Torney F, Braine GT, Victor SY, Kan W (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Biotech 2:295–300

    CAS  Google Scholar 

  • Van Bueren EL, Struik PC, Tiemens-Hulscher M, Jacobsen E (2003) The concepts of intrinsic value and integrity of plants in organic plant breeding and propagation. Crop Sci 43:1922–1929

    Article  Google Scholar 

  • Van Bueren EL, Østergård H, De Vriend H, Backes G (2010) Role of molecular markers and marker assisted selection in breeding for organic and low-input agriculture. Euphytica 175:51–64

    Article  Google Scholar 

  • Van Harten AM (1998) Mutation breeding, theory and practical applications. Cambridge University Press. ISBN: 0-521-47074-9

    Google Scholar 

  • Yamagishi N, Li C, Yoshikawa N (2016) Promotion of flowering by apple latent spherical virus vector and virus elimination at high temperature allow accelerated breeding of apple and pear. Front Plant Sci 7:171. https://doi.org/10.3389/fpls.2016.00171

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao DY, Song GQ (2014) Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry. Plant Biotechnol J 12:1319–1328

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamila Łucja Bokszczanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bokszczanin, K.Ł. (2019). Future Breeding Strategies. In: Korban, S. (eds) The Pear Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-11048-2_16

Download citation

Publish with us

Policies and ethics