Skip to main content

Analyzing the Dynamic Characteristics of Double‑Walled Carbon Nanotube Reinforced Polymer Nanocomposites

  • Living reference work entry
  • First Online:
  • 151 Accesses

Abstract

The dynamic characteristics of double-walled carbon nanotube-reinforced polymer matrix nanocomposites is investigated here. The variation of the natural frequency of such composites is observed under the variation of geometrical parameters and volume fraction of double-walled carbon nanotubes. Three types of DWCNT, i.e., Armchair, Zigzag, and Chiral, are considered for the analysis. Double-walled carbon nanotube has been modeled using spring elements and lumped masses. To simulate the interlayer interactions and describe the van der Waals potentials between carbon atoms on different layers appropriate spring elements are utilized. The effect of changes in outer length of the nanotube has been investigated by simulations keeping the inner wall length as constant. The matrix is modeled based on the Representative volume concept. Three types of RVEs, namely, Cylindrical, Hexagonal, and Square are considered for the purpose of analysis. This investigation is helpful in the applications involving high-frequency oscillators and sensors based on nanoelectromechanical devices requiring controlled length of inner and outer tubes of double-walled carbon nanotube.

This is a preview of subscription content, log in via an institution.

References

  • Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Singlewalled carbon nanotube-polymer composites: strength and weakness. Adv Mater 12:750–753

    Article  CAS  Google Scholar 

  • Ardeshana B, Jani U, Patel A, Joshi A (2017) An approach to modelling and simulation of single-walled carbon nanocones for sensing applications. AIMS Mater Sci 4(4):1010–1028

    Article  Google Scholar 

  • Ardeshana BA, Jani UB, Patel AM, Joshi AY (2018) Characterizing the vibration behavior of double walled carbon nano cones for sensing applications. Mater Technol 33(7):451–466

    Article  CAS  Google Scholar 

  • Ardeshana BA, Jani UB, Patel AM, Joshi AY (2020) Investigating the elastic behavior of carbon nanocone reinforced nanocomposites. Proc Inst Mech Eng C J Mech Eng Sci 234(14):2908–2922

    Google Scholar 

  • Baksi S, Basak PR, Biswas S (2013) Nanocomposites – technology trends & application potential. In International Conference and Exhibition on Reinforced Plastics (ICERP-2008), Mumbai (pp. 7–9).

    Google Scholar 

  • Bohlén M, Bolton K (2013) Molecular dynamics studies of the influence of single wall carbon nanotubes on the mechanical properties of poly(vinylidene fluoride). Comput Mater Sci 68:73–80

    Article  CAS  Google Scholar 

  • Bonnet P, Sireude D, Garnier B, Chauvet O (2007) Thermal properties and percolation in carbon nanotube–polymer composites. Appl Phys Lett 91:2019–2030

    Article  CAS  Google Scholar 

  • Bunch JS, Van Der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315(5811):490–493

    Article  CAS  Google Scholar 

  • Chakrabarti S, Nagasaka T, Yoshikawa Y, Pan L, Nakayama Y (2006) Growth of super long aligned brush-like carbon nanotubes. Jpn J Appl Phys 45(7L):L720

    Article  CAS  Google Scholar 

  • De Heer WA, Chatelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270(5239):1179–1180

    Article  Google Scholar 

  • Dresselhaus MS, Avouris GD (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Book  Google Scholar 

  • Endo M, Hayashi T, Kim YA, Terrones M, Dresselhaus MS (2004) Applications of carbon nanotubes in the twenty-first century. Philos Trans R Soc Lond A 362:2223–2238

    Article  CAS  Google Scholar 

  • Fei HJZQW (2009) Coiled carbon nanotubes. Prog Chem 4:008

    Google Scholar 

  • Fidelus JD, Wiesel E, Gojny FH, Schulte K, Wagner HD (2005) Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Compos A Appl Sci Manuf 36:1555–1561

    Article  CAS  Google Scholar 

  • Frankland SJV, Harik VM, Odegard GM, Brenner DW, Gates TS (2003) The stress-strain behavior of polymer-nanotube composites from molecular dynamics simulation. Compos Sci Technol 63:1655–1661

    Article  CAS  Google Scholar 

  • Genoese A, Genoese A, Rizzi NL, Salerno G (2017) On the derivation of the elastic properties of lattice nanostructures: the case of graphene sheets. Compos Part B Eng 115:316–329

    Article  CAS  Google Scholar 

  • Georgantzinos SK (2017) A new finite element for an efficient mechanical analysis of graphene structures using computer aided design/computer aided engineering techniques. J Comput Theor Nanosci 14:5347–5354

    Article  CAS  Google Scholar 

  • Giannopoulos GI, Tsiros AP, Georgantzinos SK (2013) Prediction of elastic mechanical behavior and stability of single-walled carbon nanotubes using bar elements. Mech Adv Mater Struct 20:730–741

    Article  CAS  Google Scholar 

  • Gong X, Liu J, Baskaran S, Voise RD, Young JS (2000) Surfactant-assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052

    Article  CAS  Google Scholar 

  • Gupta SS, Batra RC (2008) Continuum structures equivalent in normal mode vibrations to single-walled carbon nanotubes. Comput Mater Sci 43:715–723

    Article  CAS  Google Scholar 

  • Haggenmueller R, Gommans HH, Rinzler AG, Fischer JE, Winey KI (2000) Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem Phys Lett 330:219–225

    Article  CAS  Google Scholar 

  • Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323

    Article  CAS  Google Scholar 

  • Ihara S, Itoh S, Kitakami J-i (1993) Helically coiled cage forms of graphitic carbon. Phys Rev B 48(8):5643

    Article  CAS  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  • Karimi M, Ghajar R, Montazeri A (2018) A novel interface-treated micromechanics approach for accurate and efficient modeling of CNT/polymer composites. Compos Struct 201:528–539

    Article  Google Scholar 

  • Li C, Chou TW (2003) Elastic moduli of multi-walled carbon nanotubes and the effect of van der Waals forces. Compos Sci Technol 63(11):1517–1524

    Article  CAS  Google Scholar 

  • Li C, Chou TW (2006) Multiscale modeling of compressive behavior of carbon nanotube/polymer composites. Compos Sci Technol 66:2409–2414

    Article  CAS  Google Scholar 

  • Liu K, Sun Y, Chen L, Feng C, Feng X, Jiang K, Zhao Y, Fan S (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 8(2):700–705

    Article  CAS  Google Scholar 

  • Liu LZ, Gao HL, Zhao JJ, Lu JP (2010) Superelasticity of carbon nanocoils from atomistic quantum simulations. Nanoscale Res Lett 5(3):478–483

    Article  CAS  Google Scholar 

  • Liu L, Liu F, Zhao J (2014) Curved carbon nanotubes: from unique geometries to novel properties and peculiar applications. Nano Res 7(5):626–657

    Article  CAS  Google Scholar 

  • Matyushov DV, Schmid R (1996) Calculation of Lennard-Jones energies of molecular fluids. J Chem Phys 104(21):8627–8638

    Article  CAS  Google Scholar 

  • Meguid SA, Wernik JM, Cheng ZQ (2010) Atomistic-based continuum representation of the effective properties of nano-reinforced epoxies. Int J Solids Struct 47:1723–1736

    Article  CAS  Google Scholar 

  • Meyer JC, Geim AK, Katsnelson M, Novoselov K, Booth T, Roth S (2007) The structure of suspended graphene sheets. Nature 446(7131):60–63

    Article  CAS  Google Scholar 

  • Mokashi VV, Qian D, Liu Y (2007) A study on the tensile response and fracture in carbon nanotube-based composites using molecular mechanics. Compos Sci Technol 67:530–540

    Article  CAS  Google Scholar 

  • Patel AM, Joshi AY (2013) Vibration analysis of double wall carbon nanotube based resonators for zeptogram level mass recognition. Comput Mater Sci 30(79):230–238

    Article  CAS  Google Scholar 

  • Patel AM, Joshi AY (2014) Investigating the influence of surface deviations in double walled carbon nanotube based nanomechanical sensors. Comput Mater Sci 15(89):157–164

    Article  CAS  Google Scholar 

  • Peierls RE (1955) Quantum theory of solids (no. 23). Oxford University Press, New York

    Google Scholar 

  • Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube–polystyrene composites. Appl Phys Lett 76:2868–2870

    Article  CAS  Google Scholar 

  • Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331

    Article  CAS  Google Scholar 

  • Rouhi S, Alizadeh Y, Ansari R (2014) Molecular dynamics simulations of the single-walled carbon nanotubes/poly(phenylacetylene) nanocomposites. Superlattice Microst 72:204–218

    Article  CAS  Google Scholar 

  • Schadler L, Giannaris S, Ajayan P (1998) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73(26):3842–3844

    Article  CAS  Google Scholar 

  • Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly (vinyl alcohol) composites. Adv Mater 11:937–941

    Article  CAS  Google Scholar 

  • Shokrieh MM, Rafiee R (2010a) On the tensile behavior of an embedded carbon nanotube in polymer matrix with non-bonded interphase region. Compos Struct 92:647–652

    Article  Google Scholar 

  • Shokrieh MM, Rafiee R (2010b) Investigation of nanotube length effect on the reinforcement efficiency in carbon nanotube based composites. Compos Struct 92:2415–2420

    Article  Google Scholar 

  • Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multiscale simulation. Compos Part B Eng 41:106–115

    Article  CAS  Google Scholar 

  • Wang L, Han D, Liu GR, Cui X y (2011) Free vibration analysis of double-walled carbon nanotubes using the smoothed finite element method. Int J Comput Methods 8(4):879–890

    Article  Google Scholar 

  • Wernik JM, Meguid SA (2009) Coupling atomistics and continuum in solids: status, prospects, and challenges. Int J Mech Mater Design 5:79–110

    Article  CAS  Google Scholar 

  • Wernik JM, Meguid SA (2011) Multiscale modeling of the nonlinear response of nano-reinforced polymers. Acta Mech 217:1–16

    Article  Google Scholar 

  • Yang S, Yu S, Kyoung W, Han DS, Cho M (2012) Multiscale modeling of size-dependent elastic properties of carbon nanotube/polymer nanocomposites with interfacial imperfections. Polymer 53:623–633

    Article  CAS  Google Scholar 

  • Yang S, Yu S, Ryu J, Cho JM, Kyoung W, Han DS, Cho M (2013) Nonlinear multiscale modeling approach to characterize elastoplastic behavior of CNT/polymer nanocomposites considering the interphase and interfacial imperfection. Int J Plast 41:124–146

    Article  CAS  Google Scholar 

  • Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress-strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447:51–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ardeshana, B.A., Jani, U.B., Patel, A.M., Joshi, A.Y. (2020). Analyzing the Dynamic Characteristics of Double‑Walled Carbon Nanotube Reinforced Polymer Nanocomposites. In: Hussain, C.M., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_54-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_54-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics