Skip to main content

Microporous Polymers for Gas Separation Membranes: Overview and Advances

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

In this chapter on the basis of a thorough review of the literature in the field, the key points for high performance microporous polymers for gas separation membranes are reported and discussed. Particular relevance is given to polymers of intrinsic microporosity (PIMs). Recent findings on ultrapermeable, ultramicroporous PIMs show that currently they define the state of the art in the trade-off between permeability and selectivity for all important gas separations. Highly permeable membranes that are selective for CO2 over methane (CO2/CH4) and CO2 over nitrogen (CO2/N2) are of increasing interest for natural gas/biogas upgrading and carbon capture, respectively, due to the inherent efficiency of membrane separations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alentiev AY, Shantarovich VP, Merkel TC, Bondar VI, Freeman BD, Yampolskii YP (2002) Gas and vapor sorption, permeation, and diffusion in glassy amorphous Teflon AF1600. Macromolecules 35:9513–9522

    Article  CAS  Google Scholar 

  • Baker RW (2004) Membrane technology and application. Wiley, United Kingdom

    Google Scholar 

  • Baker RW, Low BT (2014) Gas separation membrane materials. Macromolecules 47:6999–7013

    Article  CAS  Google Scholar 

  • Baker RW, Freeman B, Kniep J, Huang YI, Merkel TC (2018) CO2 capture from cement plants and steel mills using membranes. Ind Eng Chem Res 57:15963–15970

    Article  CAS  Google Scholar 

  • Bezzu CG, Carta M, Tonkins A, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB (2012) A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. Adv Mater 24:5930–5933

    Article  CAS  Google Scholar 

  • Bondi A (1968) Physical properties of molecular crystals, liquids and glasses. Wiley, New York

    Google Scholar 

  • Breck DW (1974) Zeolite molecular sieves: structure, chemistry, and use. Wiley, New York

    Google Scholar 

  • Budd PM, Ghanem B, Msayib K, McKeown NB, Tattershall C (2003) A nanoporous network polymer derived from hexaszatrinaphthylene with potential as an adsorbent and catalyst support. J Mater Chem 13:2721–2726

    Article  CAS  Google Scholar 

  • Budd PM, Ghanem BS, Makhseed S, McKeown NB, Msayib KJ, Tattershall CE (2004) Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. Chem Commun:230–231. https://doi.org/10.1039/B311764B

  • Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15:1977–1986

    Article  CAS  Google Scholar 

  • Bum Park H, Jung CH, Lee Y-M, Hill AJ, Pas SJ, Mudie ST, Van Wagner E, Freeman BD, Cookson DJ (2007) Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318:254–258

    Article  CAS  Google Scholar 

  • Buonomenna MG (2013) Membrane processes for a sustainable industrial growth. RSC Adv 3:5694–5740

    Article  CAS  Google Scholar 

  • Buonomenna MG (2017) Membrane separation of CO2 from natural gas. Recent Pat Mater Sci 10:26–49

    CAS  Google Scholar 

  • Carta M, Malpass-Evans R, Croad M, Rogan Y, Jansen JC, Bernardo P, Bazzarelli F, McKeown NB (2013) An efficient polymer molecular sieve for membrane gas separations. Science 339:303–307

    Article  CAS  Google Scholar 

  • Carta M, Croad M, Malpass-Evans R, Jansen JC, Bernardo P, Clarizia G, Friess K, Lancˇ M, McKeown NB (2014) Triptycene induced enhancement of membrane gas selectivity for microporous Tröger’s base polymers. Adv Mater 26:3526–3531

    Article  CAS  Google Scholar 

  • Comesana-Gandara B, Chen J, Bezzu CG, Carta M, Rose I, Ferrari MC, Esposito A, Fuoco JC, Jansen NBMK (2019) Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity. Energy Environ Sci. https://doi.org/10.1039/C9EE01384A (in press)

    Article  Google Scholar 

  • Cooper AL (2009) Conjugated microporous polymers. Adv Mater 21:1291–1295

    Article  CAS  Google Scholar 

  • Curro JG, Lagasse RR, Simha R (1982) Diffusion model for volume recovery in glasses. Macromolecules 15:1621–1626

    Article  CAS  Google Scholar 

  • Dlubek G, Clarke AP, Fretwell HM, Dugdale SB, Alam MA (1996) Positron lifetime studies of free volume hole size distribution in glassy polycarbonate and polystyrene. Phys Status Solidi A 157:351–364

    Article  CAS  Google Scholar 

  • Everett DH (1972) Definitions, terminology and symbols in colloid and surface chemistry, part I. Pure Appl Chem 31:577–638

    Article  Google Scholar 

  • Freeman BD (1999) Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32:375–380

    Article  CAS  Google Scholar 

  • Fuoco A, Comesaña-Gándara B, Longo M, Esposito E, Monteleone M, Rose I, Bezzu CG, Carta M, McKeown NB, Jansen JC (2018) Temperature dependence of gas permeation and diffusion in triptycene-based ultrapermeable polymers of intrinsic microporosity. ACS Appl Mater Interfaces 10:36475–36482

    Article  CAS  Google Scholar 

  • Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD (2017) Polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules 50:7809–7843

    Article  CAS  Google Scholar 

  • Ghanem BS (2012) A facile synthesis of a novel triptycene containing A–B monomer: precursor to polymers of intrinsic microporosity. Polym Chem 3:96–98

    Article  CAS  Google Scholar 

  • Ghanem BS, McKeown NB, Budd PM, Selbie JD, Fritsch D (2008) High-performance membranes from polyimides with intrinsic microporosity. Adv Mater 20:2766–2771

    Article  CAS  Google Scholar 

  • Ghanem BS, McKeown NB, Budd PM, Al-Harbi NM, Fritsch D, Heinrich K, Starannikova L, Tokarev A, Yampolskii Y (2009) Synthesis, characterization, and gas permeation properties of a novel group of polymers with intrinsic microporosity: PIM-polyimides. Macromolecules 42:7881–7888

    Article  CAS  Google Scholar 

  • Ghanem BS, Swaidan R, Litwiller E, Pinnau I (2014a) Ultra-microporous triptycene-based polyimide membranes for high-performance gas separation. Adv Mater 26:3688–3692

    Article  CAS  Google Scholar 

  • Ghanem BS, Swaidan R, Ma X, Litwiller E, Pinnau I (2014b) Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. Adv Mater 26:6696–6700

    Article  CAS  Google Scholar 

  • Glasstone S, Laidler KJ, Eyring H (1941) The theory of rate processes, 1st edn. McGraw-Hill Book Co, New York

    Google Scholar 

  • Golemme G, Nagy JB, Fonseca A, Algieri C, Yampolskii Y (2003) 129Xe-NMR study of free volume in amorphous perfluorinated polymers: comparison with other methods. Polymer 44:5039–5045

    Article  CAS  Google Scholar 

  • Guiver MD, Lee YM (2013) Polymer rigidity improves microporous membranes. Science 339:284–285

    Article  CAS  Google Scholar 

  • Heuchel M, Fritsch D, Budd PM, McKeown NB, Hofmann D (2008) Atomistic packing model and free volume distribution of a polymer with intrinsic microporosity (PIM-1). J Membr Sci 318:84–99

    Article  CAS  Google Scholar 

  • Hofmann D, Entrialgo-Castano M, Lerbret A, Heuchel M, Yampolskii Y (2003) Molecular modeling investigation of free volume distributions in stiff chain polymers with conventional and ultrahigh free volume: comparison between molecular modeling and positron lifetime studies. Macromolecules 36:8528–8538

    Article  CAS  Google Scholar 

  • Huang Y, Paul DR (2004) Physical aging of thin glassy polymer films monitored by gas permeability. Polymer 45:8377–8393

    Article  CAS  Google Scholar 

  • Jansen JC, Macchione M, Tocci E, De Lorenzo L, Yampolskii YP, Sanfirova O, Shantarovich VP, Heuchel M, Hofmann D, Drioli E (2009) Macromolecules 42:7589–7604

    Article  CAS  Google Scholar 

  • Koros WJ, Zhang C (2017) Materials for next-generation molecularly selective synthetic membranes. Nat Mater 16:289–297

    Article  CAS  Google Scholar 

  • Livingston A, Baker RW (2017) Membranes from academia to industry. Nat Mater 16:280–282

    Article  CAS  Google Scholar 

  • Masuda T, Isobe E, Higashimura T (1983) Poly[1-(trimethylsilyl)-1-propyne]: a new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas permeability. J Am Chem Soc 105:7473–7474

    Article  CAS  Google Scholar 

  • Masuda T, Isobe E, Higashimura T (1985) Polymerization of 1-(trimethyl)-1-propyne by halides of niobium(V) and tantalum(V) and polymer properties. Macromolecules 18:841–845

    Article  CAS  Google Scholar 

  • Merkel TC, Pinnau I, Prabhakar R, Freeman BD (2006) In: Yampolskii YP, Pinnau I, Freeman BD (eds) Gas and vapor transport properties of perfluoropolymers in materials science of membranes for gas and vapor separation. Wiley, Chichester

    Google Scholar 

  • Nagai K, Masuda T, Nakagawa T, Freeman BD, Pinnau I (2001) Poly[1-(trimethylsilyl)-1-propyne] and related polymers: synthesis, properties and functions. Prog Polym Sci 26:721–798

    Article  CAS  Google Scholar 

  • Nagel C, Günther-Schade K, Fritsch D, Strunskus T, Faupel F (2002) Free volume and transport properties in highly selective polymer membranes. Macromolecules 35:2071–2077

    Article  CAS  Google Scholar 

  • Park JY, Paul DR (1997) Correlation and prediction of gas permeability in glassy polymer membrane materials via a modified free volume based group contribution method. J Membr Sci 125:23–39

    Article  CAS  Google Scholar 

  • Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356(6343):eaab0530

    Article  CAS  Google Scholar 

  • Polyakov AM, Starannikova LE, Yampolskii YP (2003) Amorphous Teflons AF as organophilic pervaporation materials: transport of individual components. J Membr Sci 216:241–256

    Article  CAS  Google Scholar 

  • Rallabandi PS, Ford DM (2000) Entropic and energetic selectivity in air separation with microporous materials. AICHE J 46:99–109

    Article  CAS  Google Scholar 

  • Robeson LM (1991) Correlation of separation factor versus permeability for polymeric membranes. J Membr Sci 62:165–185

    Article  CAS  Google Scholar 

  • Robeson LM (2008) The upper bound revisited. J Membr Sci 320:390–400

    Article  CAS  Google Scholar 

  • Robeson LM, Smith ZP, Freeman BD, Paul DR (2014) Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. J Membr Sci 453:71–83

    Article  CAS  Google Scholar 

  • Robeson LM, Dose ME, Freeman BD, Paul DR (2017) Analysis of the transport properties of thermally rearranged (TR) polymers and polymers of intrinsic microporosity (PIM) relative to upper bound performance. J Membr Sci 525:18–24

    Article  CAS  Google Scholar 

  • Rogan Y, Malpass-Evans R, Carta M, Lee M, Jansen JC, Bernardo P, Clarizia G, Tocci E, Friess K, Lanˇcd M, McKeown NB (2014) A highly permeable polyimide with enhanced selectivity for membrane gas separations. J Mater Chem A 2:4874–4877

    Article  CAS  Google Scholar 

  • Rose I, Bezzu CG, Carta M, Comesaña-Gándara B, Lasseuguette E, Ferrari MC, Bernardo P, Clarizia G, Fuoco A, Jansen JC, Hart KE, Liyana-Arachchi TP, Colina CM, McKeown NB (2017) Polymer ultrapermeability from the inefficient packing of 2D chains. Nat Mater 16:932–938

    Article  CAS  Google Scholar 

  • Shantarovich VP, Novikov YA, Suptel ZK, Oleinik EF, Boyce MC (1999) The influence of deformation and chemical composition on elementary free volumes in glassy polymers. Acta Phys Pol A 95:659–662

    Article  Google Scholar 

  • Shantarovich VP, Novikov YA, Suptel ZK, Kevdina IB, Masuda T, Khotimskii VS, Yampolskii YP (2000a) Influence of deformation and chemical structure on elementary free volumes in glassy polymers. Radiat Phys Chem 58(5–6):513–520

    Article  CAS  Google Scholar 

  • Shantarovich VP, Kevdina IB, Yampolskii YP, Alentiev AY (2000b) Positron annihilation lifetime study of high and low free volume glassy polymers: effects of free volume sizes on the permeability and permselectivity. Macromolecules 33:7453–7466

    Article  CAS  Google Scholar 

  • Shrader DM, Jean YC (1988) Positron and positronium chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Singh A, Koros WJ (1996) Significance of entropic selectivity for advanced gas separation membranes. Ind Eng Chem Res 35:1231–1234

    Article  CAS  Google Scholar 

  • Swaidan R, Al-Saeedi M, Ghanem B, Litwiller E, Pinnau I (2014) Rational design of intrinsically ultramicroporous polyimides containing bridgehead-substituted triptycene for highly selective and permeable gas separation membranes. Macromolecules 47:5104–5114

    Article  CAS  Google Scholar 

  • Swaidan R, Ghanem B, Pinnau I (2015) Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett 4:947–951

    Article  CAS  Google Scholar 

  • Thran A, Kroll G, Faupel F (1999) Correlation between fractional free volume and diffusivity of gas molecules in glassy polymers. J Polym Sci B Polym Phys 37:3344–3358

    Article  CAS  Google Scholar 

  • Van Krevelen DW (1990) Properties of polymers: their correlation with chemical structure, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Wijmans JG, Baker RW (1995) The solution diffusion model: a review. J Membr Sci 107:1–21

    Article  CAS  Google Scholar 

  • Wilks BR, Chung WJ, Ludovice PJ, Rezac MR, Meakin P, Hill A (2003) Impact of average free-volume element size on transport in stereoisomers of polynorbornene. I. Properties at 35 °C. J Polym Sci B Polym Phys 41:2185–2199

    Article  CAS  Google Scholar 

  • Yampolskii YP, Kaliuzhnyi NE, Durgaryan SG (1986) Thermodynamics of sorption in glassy poly(vinyltrimethylsilane). Macromolecules 19:846–850

    Article  CAS  Google Scholar 

  • Yampolskii YP, Shantarovich VP, Chernyakovskii FP, Kornilov AI, Plate NA (1993) Estimation of free volume in poly-(trimethylsilyl propyne) by positron annihilation and electrochromism methods. J Appl Polym Sci 47:85–92

    Article  CAS  Google Scholar 

  • Zimmerman CM, Koros WJ (1999) Entropic selectivity analysis of a series of polypyrrolones for gas separation membranes. Macromolecules 32:3341–3346

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Buonomenna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buonomenna, M.G. (2020). Microporous Polymers for Gas Separation Membranes: Overview and Advances. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_48-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_48-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics