Skip to main content

Zirconia-Based Nanocomposites

  • Living reference work entry
  • First Online:

Abstract

Zirconia has recently become topical in the sphere of multifunctional materials for advanced applications. It has been employed in various applications such as structural ceramics, catalytic converters, oxygen sensors, nuclear industry, etc. It features high fracture toughness and high ionic conductivity and is chemically inert and biocompatible. In this chapter, the main focus is to provide insight into understanding the influence of zirconia chemical structure on the properties of its nanocomposites toward various advanced applications. Recent advances on the production of zirconia nanocomposites and properties are also highlighted. We conclude with ongoing challenges and future remarks.

This is a preview of subscription content, log in via an institution.

References

  • Ahmed MA, Ebrahim MI (2014) Effect of zirconium oxide nano-fillers addition on the flexural strength, fracture toughness, and hardness of heat-polymerized acrylic resin. World J Nano Sci Eng 4(02):50

    Article  CAS  Google Scholar 

  • Akinci A, Sen S, Sen U (2014) Friction and wear behavior of zirconium oxide reinforced PMMA composites. Compos Part B 56:42–47

    Article  CAS  Google Scholar 

  • Asopa V, Suresh S, Khandelwal M, Sharma V, Asopa SS, Kaira LS (2015) A comparative evaluation of properties of zirconia reinforced high impact acrylic resin with that of high impact acrylic resin. Saudi J Dent Res 6(2):146–151

    Article  Google Scholar 

  • Auscher M-C, Fulchiron R, Périé T, Cassagnau P (2017) Morphological and rheological properties of zirconia filled polyethylene. Polymer 132:174–179

    Article  CAS  Google Scholar 

  • Ayad NM, Badawi MF, Fatah AA (2008) Effect of reinforcement of high-impact acrylic resin with zirconia on some physical and mechanical properties. Arch Oral Res 4(3)

    Google Scholar 

  • Bai L, Wyrwalski F, Machut C, Roussel P, Monflier E, Ponchel A (2013) Hydroxypropyl-β-cyclodextrin as a versatile additive for the formation of metastable tetragonal zirconia exhibiting high thermal stability. CrystEngComm 15(11):2076–2083

    Article  CAS  Google Scholar 

  • Bashir M, Riaz S, Naseem S (2015) Structural and mechanical properties of sucrose added zirconia thin films. Mater Today Proc 2(10, Part B):5777–5785. https://doi.org/10.1016/j.matpr.2015.11.127

    Article  Google Scholar 

  • Bumajdad A, Nazeer AA, Al Sagheer F, Nahar S, Zaki MI (2018) Controlled synthesis of ZrO2 nanoparticles with tailored size, morphology and crystal phases via organic/inorganic hybrid films. Sci Rep 8(1):3695

    Article  Google Scholar 

  • Cao W, Kang J, Fan G, Yang L, Li F (2015) Fabrication of porous ZrO2 nanostructures with controlled crystalline phases and structures via a facile and cost-effective hydrothermal approach. Ind Eng Chem Res 54(51):12795–12804

    Article  CAS  Google Scholar 

  • Chen L, Mashimo T, Omurzak E, Okudera H, Iwamoto C, Yoshiasa A (2011) Pure tetragonal ZrO2 nanoparticles synthesized by pulsed plasma in liquid. J Phys Chem C 115(19):9370–9375

    Article  CAS  Google Scholar 

  • Esmaeili B, Chaouki J, Dubois C (2006) Polymerization compounding on the surface of zirconia nanoparticles. In: Macromolecular Symposia, vol 1. Wiley Online Library, pp 268–276

    Google Scholar 

  • Fangqiang F, Zhengbin X, Qingying L, Zhong L, Huanqin C (2013) ZrO2/PMMA nanocomposites: preparation and its dispersion in polymer matrix. Chin J Chem Eng 21(2):113–120

    Article  Google Scholar 

  • Fathima JB, Pugazhendhi A, Venis R (2017) Synthesis and characterization of ZrO2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 110:245–251. https://doi.org/10.1016/j.micpath.2017.06.039

    Article  CAS  Google Scholar 

  • Feldman D (2013) REVIEW polymer nanocomposites: flammability. J Macromol Sci A 50(12):1241–1249. https://doi.org/10.1080/10601325.2013.843407

    Article  CAS  Google Scholar 

  • Gad M, ArRejaie AS, Abdel-Halim MS, Rahoma A (2016) The reinforcement effect of nano-zirconia on the transverse strength of repaired acrylic denture base. Int J Dent 2016:1–6

    Article  Google Scholar 

  • Goto Y, Omata T, Otsuka-Yao-Matsuo S (2009) Extremely suppressed grain growth of Y2O3-stabilized zirconia nanocrystals synthesized by the nonhydrolytic sol–gel technique. J Electrochem Soc 156(1):K4–K9

    Article  CAS  Google Scholar 

  • Hameed HK, Rahman HA (2015) The effect of addition nano particle ZrO2 on some properties of autoclave processed heat cure acrylic denture base material. J Baghdad Coll Dent 27(1):32–39

    Article  Google Scholar 

  • Heshmatpour F, Aghakhanpour RB (2011) Synthesis and characterization of nanocrystalline zirconia powder by simple sol–gel method with glucose and fructose as organic additives. Powder Technol 205(1):193–200. https://doi.org/10.1016/j.powtec.2010.09.011

    Article  CAS  Google Scholar 

  • Hu Y, Zhou S, Wu L (2009) Surface mechanical properties of transparent poly (methyl methacrylate)/zirconia nanocomposites prepared by in situ bulk polymerization. Polymer 50(15):3609–3616

    Article  CAS  Google Scholar 

  • Hu Y, Gu G, Zhou S, Wu L (2011) Preparation and properties of transparent PMMA/ZrO2 nanocomposites using 2-hydroxyethyl methacrylate as a coupling agent. Polymer 52(1):122–129

    Article  CAS  Google Scholar 

  • Hwangbo Y, Lee Y-I (2019) Facile synthesis of zirconia nanoparticles using a salt-assisted ultrasonic spray pyrolysis combined with a citrate precursor method. J Alloys Compd 771:821–826

    Article  CAS  Google Scholar 

  • Ihab N (2011) Evaluation the effect of modified nano-fillers addition on some properties of heat cured acrylic denture base material. J Baghdad Coll Dent 23(3):23–29

    Google Scholar 

  • Imai Y, Terahara A, Hakuta Y, Matsui K, Hayashi H, Ueno N (2009) Transparent poly(bisphenol A carbonate)-based nanocomposites with high refractive index nanoparticles. Eur Polym J 45(3):630–638. https://doi.org/10.1016/j.eurpolymj.2008.12.031

    Article  CAS  Google Scholar 

  • Jayakumar S, Ananthapadmanabhan P, Thiyagarajan T, Perumal K, Mishra S, Suresh G, Su L, Tok A (2013) Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders. Mater Chem Phys 140(1):176–182

    Article  CAS  Google Scholar 

  • Jongsomjit B, Panpranot J, Praserthdam P (2007) Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Mater Lett 61(6):1376–1379

    Article  CAS  Google Scholar 

  • Lee W, Gil SC, Kim H, Han K, Lee H (2016) Partially sulfonated Poly(arylene ether sulfone)/organically modified metal oxide nanoparticle composite membranes for proton exchange membrane for direct methanol fuel cell. Compos Sci Technol 129:101–107

    Article  CAS  Google Scholar 

  • Machmudah S, Widiyastuti W, Prastuti OP, Nurtono T, Winardi S, Wahyudiono KH, Goto M (2014) Synthesis of ZrO2 nanoparticles by hydrothermal treatment. In: AIP conference proceedings, vol 1. AIP, pp 166–172

    Google Scholar 

  • Mallakpour S, Zeraatpisheh F (2014) Novel flame retardant zirconia-reinforced nanocomposites containing chlorinated poly(amide-imide): synthesis and morphology probe. J Exp Nanosci 9(10):1035–1050. https://doi.org/10.1080/17458080.2013.775711

    Article  CAS  Google Scholar 

  • Mochane M, Mokhena T, Mokhothu T, Mtibe A, Sadiku E, Ray S, Ibrahim I, Daramola O (2019) Recent progress on natural fiber hybrid composites for advanced applications: a review. Express Polym Lett 13(2):159–198

    Article  CAS  Google Scholar 

  • Motaung T, Luyt A, Saladino M, Chillura Martino D, Caponetti E (2012) Morphology, mechanical properties and thermal degradation kinetics of zirconia-PMMA composites prepared by melt compounding. Express Polym Lett 6:871–881

    Google Scholar 

  • Motaung T, Saladino M, Luyt A, Martino DC (2013) Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate. Eur Polym J 49(8):2022–2030

    Article  CAS  Google Scholar 

  • Nourani-Vatani M, Ganjali M, Solati-Hashtjin M, Zarrintaj P, Reza Saeb M (2018) Zirconium-based hybrid coatings: a versatile strategy for biomedical engineering applications. Mater Today Proc 5(7, Part 3):15524–15531. https://doi.org/10.1016/j.matpr.2018.04.159

    Article  CAS  Google Scholar 

  • Reyes-Acosta M, Torres-Huerta AM, Dominguez-Crespo MA, Flores-Vela AI, Dorantes-Rosales HJ, Ramírez-Meneses E (2015) Influence of ZrO2 nanoparticles and thermal treatment on the properties of PMMA/ZrO2 hybrid coatings. J Alloys Compd 643:S150–S158

    Article  CAS  Google Scholar 

  • Shi F, Li Y, Wang H, Zhang Q (2012) Fabrication of well-dispersive yttrium-stabilized cubic zirconia nanoparticles via vapor phase hydrolysis. Prog Nat Sci Mater Int 22(1):15–20

    Article  Google Scholar 

  • Srdić VV, Winterer M (2003) Aluminum-doped zirconia nanopowders: chemical vapor synthesis and structural analysis by Rietveld refinement of X-ray diffraction data. Chem Mater 15(13):2668–2674

    Article  Google Scholar 

  • Taguchi M, Nakane T, Matsushita A, Sakka Y, Uchikoshi T, Funazukuri T, Naka T (2014) One-pot synthesis of monoclinic ZrO2 nanocrystals under subcritical hydrothermal conditions. J Supercrit Fluids 85:57–61. https://doi.org/10.1016/j.supflu.2013.11.001

    Article  CAS  Google Scholar 

  • Taguchi M, Matsushita A, Uchikoshi T, Sakka Y, Takami S, Funazukuri T, Naka T (2015) Influence of the crystal structure on the physical properties of monoclinic ZrO2 nanocrystals. Nano-Struct Nano-Objects 1:1–6. https://doi.org/10.1016/j.nanoso.2015.03.001

    Article  CAS  Google Scholar 

  • Tyagi B, Sidhpuria K, Shaik B, Jasra RV (2006) Synthesis of nanocrystalline zirconia using sol−gel and precipitation techniques. Ind Eng Chem Res 45(25):8643–8650

    Article  CAS  Google Scholar 

  • Wang H, Xu P, Zhong W, Shen L, Du Q (2005) Transparent poly(methyl methacrylate)/silica/zirconia nanocomposites with excellent thermal stabilities. Polym Degrad Stab 87(2):319–327. https://doi.org/10.1016/j.polymdegradstab.2004.08.015

    Article  CAS  Google Scholar 

  • Wang Y, Zhang D, Shi L, Li L, Zhang J (2008) Novel transparent ternary nanocomposite films of trialkoxysilane-capped poly(methyl methacrylate)/zirconia/titania with incorporating networks. Mater Chem Phys 110(2):463–470. https://doi.org/10.1016/j.matchemphys.2008.03.006

    Article  CAS  Google Scholar 

  • Wang X, Wu L, Li J (2010a) Influence of nanozirconia on the thermal stability of poly(methyl methacrylate) prepared by in situ bulk polymerization. J Appl Polym Sci 117(1):163–170

    CAS  Google Scholar 

  • Wang X, Song Y, Bao J (2010b) Synergistic effects of ZrO2 or B2O3 on flame-retarded poly (butyl methacrylate) with tricresylphosphate. Fire Mater 34(7):357–366

    Article  CAS  Google Scholar 

  • Wang X, Wu L, Li J (2011) Synergistic flame retarded poly (methyl methacrylate) by nano-ZrO2 and triphenylphosphate. J Therm Anal Calorim 103(2):741–746

    Article  CAS  Google Scholar 

  • Xu K, Zhou S, Wu L (2009) Effect of highly dispersible zirconia nanoparticles on the properties of UV-curable poly(urethane-acrylate) coatings. J Mater Sci 44(6):1613–1621. https://doi.org/10.1007/s10853-008-3231-8

    Article  CAS  Google Scholar 

  • Yang X, Zhou D, Ma X, Wang X, Xu J, Chen G, Hou X, Liu X, Gao X (2018) Synthesis of dopant-free tetragonal zirconia nano-powders with aqueous precursor and their optical properties. Mater Res Express 6(1):015041

    Article  Google Scholar 

  • Yu W, Wang X, Tang Q, Guo M, Zhao J (2014) Reinforcement of denture base PMMA with ZrO2 nanotubes. J Mech Behav Biomed Mater 32:192–197

    Article  CAS  Google Scholar 

  • Zhang Y, Jin X, Rong Y, Hsu T, Jiang D, Shi J (2006) The size dependence of structural stability in nano-sized ZrO2 particles. Mater Sci Eng A 438:399–402

    Article  Google Scholar 

  • Zhang R, Liu H, He D (2012) Pure monoclinic ZrO2 prepared by hydrothermal method for isosynthesis. Catal Commun 26:244–247

    Article  CAS  Google Scholar 

  • Zhang S, Lv Y, Li J, Liang S, Liu Z (2017) Mechanical enhancement of zirconia reinforced polyimine nanocomposites. J Appl Polym Sci 134(32):45183

    Article  Google Scholar 

  • Zhong Y, Xie G, Sui G, Yang R (2011) Poly (ether ether ketone) composites reinforced by short carbon fibers and zirconium dioxide nanoparticles: mechanical properties and sliding wear behavior with water lubrication. J Appl Polym Sci 119(3):1711–1720

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge National Research Funding (NRF, South Africa) and Department of Science and Technology (DST, South Africa)-Biorefinery Program for funding

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. C. Mokhena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mokhena, T.C., John, M.J., Mochane, M.J., Mtibe, A. (2019). Zirconia-Based Nanocomposites. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_47-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_47-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics