Skip to main content

Iron Oxide-Based Polymeric Magnetic Nanoparticles for Drug and Gene Delivery: In Vitro and In Vivo Applications in Cancer

  • Living reference work entry
  • First Online:

Abstract

In the war against cancer, nanotechnology has important role by improving the efficacy of traditional therapies. Nanoparticle-based drug delivery system has many advantages including imaging, drug delivery, extended circulation time, and controlled release. In recent years, iron oxide-based polymeric magnetic nanoparticles have gained significance in biomedical applications due to their superparamagnetism, high surface area, low toxicity, and easy separation in the presence of magnetic fields. Numerous methods have been developed for the production of iron oxide-based polymeric magnetic nanoparticles of different shapes and sizes, including hydrothermal, coprecipitation, thermal decomposition electrochemical, biological synthesis, etc. The nanoscale size, large surface area, and unique properties of iron oxide-based polymeric magnetic nanoparticles make them highly efficient in the diagnosis and treatment of such ailments as cancer, neurodegenerative disorders, and cardiovascular disease. This chapter investigates the design, synthesis, characterization, and in vivo/in vitro application of iron oxide-based polymeric magnetic nanoparticles in the treatment of cancer, as well as recent progress and perspectives in the field.

This is a preview of subscription content, log in via an institution.

References

  • Ahmadzada T, Reid G, McKenzie DR (2018) Fundamentals of siRNA and miRNA therapeutics and a review of targeted nanoparticle delivery systems in breast cancer. Biophys Rev 10(1):69–86

    Article  CAS  Google Scholar 

  • Ali A, Zafar H, Zia M, Haq I, Phull AR, Ali JS, Hussain A (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol Sci Appl 9:49–67

    Article  CAS  Google Scholar 

  • Arami S, Rashidi MR, Mahdavi M, Fathi M, Entezami AA (2017) Synthesis and characterization of Fe3O4 -PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol 36(3):227–237

    Article  CAS  Google Scholar 

  • Arruebo M, Fernández-Pacheco R, Ibarra M, Santamaría J (2007) Magnetic nanoparticles for drug delivery. NanoToday 2:22–32

    Article  Google Scholar 

  • Baghbanzadeh M, Carbone L, Cozzoli PD, Kappe CO (2011) Microwave-assisted synthesis of colloidal inorganic nanocrystals. Angew Chem 50:11312–11359

    Article  CAS  Google Scholar 

  • Bakhtiary Z, Saei AA, Hajipour MJ, Raoufi M, Vermesh O, Mahmoudi M (2016) Targeted superparamagnetic iron oxide nanoparticles for early detection of cancer: possibilities and challenges. Nanomed Nanotechnol Biol Med 12:287–307

    Article  CAS  Google Scholar 

  • Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, Kroh FO, Walker B, Leaym X, Koper OB, Tamura M, Chikan V, Bossmann SH, Troyer DL (2010) A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study. BMC Cancer 10:119

    Article  CAS  Google Scholar 

  • Banobre-Lopez M, Teijeiro A, Rivas J (2013) Magnetic nanoparticle-based hyperthermia for cancer treatment. Rep Pract Oncol Radiother 18(6):397–400

    Article  Google Scholar 

  • Berry C, Curtis A (2003) Functionalisation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:198

    Article  Google Scholar 

  • Boyle P, Levin B (2008) World cancer report. World Health Organization Press, Geneva

    Google Scholar 

  • Byrappa K, Yoshimura M (2001) In: Andrew W (ed) Handbook of hydrothermal technology. Noyes Publications, Norwich

    Google Scholar 

  • Chatterjee J, Haik Y, Chen CJ (2003) Size dependent magnetic properties of iron oxide nanoparticles. J Magn Magn Mater 8:113–118

    Article  Google Scholar 

  • Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J (2010) Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 62:144–149

    Article  CAS  Google Scholar 

  • Corr SA, Gun’ko YK, Douvalis AP, Venkatesan M, Gunning RD, Nellist PD (2008) From nanocrystals to nanorods: new iron oxide-silica nanocomposites from metallorganic precursors. J Phys Chem C 112:1008–1018

    Article  CAS  Google Scholar 

  • Cui HJ, Cai JK, Zhao H, Yuan B, Ai C, Fu ML (2014) One step solvothermal synthesis of functional hybrid γ-Fe2O3/carbon hollow spheres with superior capacities for heavy metal removal. J Colloid Interface Sci 425:131–135

    Article  CAS  Google Scholar 

  • Danafar H, Sharafi A, Askarlou S, Manjili HK (2017) Preparation and characterization of pegylated iron oxide- gold nanoparticles for delivery of sulforaphane and curcumin. Drug Res (Stuttg) 67:698–704

    Article  CAS  Google Scholar 

  • Deravi LF, Swartz JD, Wright DW (2010) The biomimetic synthesis of metal oxide nanomaterials. Wiley, New York

    Book  Google Scholar 

  • Dilnawaz F, Singh A, Mohanty C, Sahoo SK (2010) Dual drug loaded superparamagnetic iron oxide nanoparticles for targeted cancer therapy. Biomaterials 31:3694–3706

    Article  CAS  Google Scholar 

  • DiPietro RS, Johnson HG, Bennett SP, Nummy TJ, Lewis LH (2010) Determining magnetic nanoparticle size distributions from thermomagnetic measurements. Appl Phys Lett 8:222506

    Article  CAS  Google Scholar 

  • Erdem M, Yalcin S, Gunduz U (2017) Folic acid-conjugated polyethylene glycol-coated magnetic nanoparticles for doxorubicin delivery in cancer chemotherapy: Preparation, characterization and cytotoxicity on HeLa cell line. Hum Exp Toxicol 36(8):833–845

    Article  CAS  Google Scholar 

  • Fazal S, Paul-Prasanth B, Nair SV, Menon D (2017) Theranostic iron oxide/gold ion nanoprobes for MR imaging and noninvasive RF hyperthermia. ACS Appl Mater Interfaces 9(34): 28260–28272

    Article  CAS  Google Scholar 

  • Feng Q, Tong R (2016) Anticancer nanoparticulate polymer-drug conjugate. Bioeng Transl Med 1:277–296

    Article  CAS  Google Scholar 

  • Gardlik R, Palffy R, Hodosy J, Lukacs J, Turna J, Celec P (2005) Vectors and delivery systems in gene therapy. Med Sci Monit 11:110–121

    Google Scholar 

  • Gkanas EI (2013) In vitro magnetic hyperthermia response of iron oxide MNP’s incorporated in DA3, MCF-7 and HeLa cancer cell lines. Cent Eur J Chem 17:1042–1054

    Google Scholar 

  • Goldburg WI (1999) Dynamic light scattering. Am J Phys 8:1152–1160

    Article  Google Scholar 

  • Groult H, Poupard N, Herranz F, Conforto E, Bridiau N, Sannier F, Bordenave S, Piot JM, Ruiz-Cabello J, Fruitier-Arnaudin I, Maugard T (2017) Family of bioactive heparins-coated iron oxide nanoparticles with positive contrast in magnetic resonance imaging for specific biomedical applications. Biomacromolecules 18(10):3156–3167

    Article  CAS  Google Scholar 

  • Guibert C, Dupuis V, Peyre V, Fresnais J (2015) Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C 119(50):28148–28154

    Article  CAS  Google Scholar 

  • Gunduz U, Keskin T, Tansık G, Mutlu P, Yalcin S, Unsoy G, Yakar A, Khodadust R, Gunduz G (2014) Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacother 68(6):729–736

    Article  CAS  Google Scholar 

  • Hajba L, Guttman A (2016) The use of magnetic nanoparticles in cancer theranostics: toward handheld diagnostic devices. Biotechnol Adv 34(4):354–361

    Article  CAS  Google Scholar 

  • Hamzian N, Hashemi M, Ghorbani M, Bahreyni Toosi MH, Ramezani M (2017) Preparation, optimization and toxicity evaluation of (SPION-PLGA) ±PEG nanoparticles loaded with gemcitabine as a multifunctional nanoparticle for therapeutic and diagnostic applications. Iran J Pharm Res 16(1):8–21

    CAS  Google Scholar 

  • Hauser AK, Wydra RJ, Stocke NA, Anderson KW, Hilt JZ (2015) Magnetic nanoparticles and nanocomposites for remote controlled therapies. J Control Release 10(219):76–94

    Article  CAS  Google Scholar 

  • He Q, Yuan T, Wei S, Haldolaarachchige N, Luo Z, Young DP, Khasanov A, Guo Z (2012) Morphology- and phase-controlled iron oxide nanoparticles stabilized with maleic anhydridegrafted polypropylene. Angew Chem Int Ed Engl 51(35):8842–8845

    Article  CAS  Google Scholar 

  • Huang X, Schwind S, Yu B, Santhanam R, Wang H, Hoellerbauer P, Mims A, Klisovic R, Walker AR, Chan KK et al (2013) Targeted delivery of microRNA-29b by transferrin-conjugated anionic lipopolyplex nanoparticles: a novel therapeutic strategy in acute myeloid leukemia. Clin Cancer Res 19:2355–2367

    CAS  Google Scholar 

  • Hussain CM (2017) Magnetic nanomaterials for environmental analysis. In: Hussain CM, Kharisov B (eds) Advanced environmental analysis-application of nanomaterials. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Hyeon T (2003) Chemical synthesis of magnetic nanoparticles. Chem Commun 8:927–934

    Article  CAS  Google Scholar 

  • Jiang S, Eltoukhy AA, Love KT, Langer R, Anderson DG (2013) Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett 13(3):1059–1064

    Article  CAS  Google Scholar 

  • Jiang L, Vader P, Schiffelers RM (2017) Extracellular vesicles for nucleic acid delivery: progress and prospects for safe RNA-based gene therapy. Gene Ther 24:157–166. https://doi.org/10.1038/gt.2017.8

    Article  CAS  Google Scholar 

  • Kalidasan V, Liu XL, Herng TS, Yang Y, Ding J (2016) Bovine serum albumin-conjugated ferrimagnetic iron oxide nanoparticles to enhance the biocompatibility and magnetic hyperthermia performance. Nanomicro Lett 8:80–93

    Google Scholar 

  • Kandpal ND, Sah N, Loshali R, Joshi R, Prasad J (2015) Co-precipitation method of synthesis and characterization of iron oxide nanoparticles. J Sci Ind Res 73(2):87–90

    Google Scholar 

  • Ke F, Qiu LG, Yuan YP, Jiang X, Zhu JF (2012) Fe3O4@MOF core–shell magnetic microspheres with a designable metal-organic framework shell. J Mater Chem 22:9497–9500

    Article  CAS  Google Scholar 

  • Khatri N, Rathi M, Baradia D, Trehan S, Misra A (2012) In vivo delivery aspects of miRNA, shrna and siRNA. Crit Rev Ther Drug Carrier Syst 29:487–527

    Article  CAS  Google Scholar 

  • Kruse AM, Meenach SA, Anderson KW, Hilt JZ (2014) Synthesis and characterization of CREKA-conjugated iron oxide nanoparticles for hyperthermia applications. Acta Biomater 10(6): 2622–2629

    Article  CAS  Google Scholar 

  • Lam JK, Chow MY, Zhang Y, Leung SW (2015) siRNA versus miRNA as therapeutics for gene silencing. Mol Ther Nucleic Acids 4:e252

    Article  CAS  Google Scholar 

  • Langevin D (1992) Micelles and microemulsions. Annu Rev Phys Chem 43:341–369

    Article  CAS  Google Scholar 

  • Laurent S, Vander Elst L, Fu Y, Muller RN (2004) Synthesis and physicochemical characterization of Gd-DTPA-B(sLex)A, a new MRI contrast agent targeted to inflammation. Bioconjug Chem 15(1):99–103

    Article  CAS  Google Scholar 

  • Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev 108:2064–2110

    Article  CAS  Google Scholar 

  • Lawrence P, Ceccoli J (2017) Advances in the application and impact of MicroRNAs as therapies for skin disease. BioDrugs 31(5):423–438

    Article  CAS  Google Scholar 

  • Lee SJ, Jeong JR, Shin SC, Kim JC, Chang YH et al (2004) Nanoparticles of magnetic ferric oxides encapsulated with poly (D,L latide-co-glycolide) and their applications to magnetic resonance imaging contrast agent. J Magn Magn Mater 272–276:2432–2433

    Article  CAS  Google Scholar 

  • Li D, Tang X, Pulli B, Lin C, Zhao P, Cheng J, Lv Z, Yuan X, Luo Q, Cai H, Ye M (2014) Theranostic nanoparticles based on bioreducible polyethylenimine-coated iron oxide for reduction-responsive gene delivery and magnetic resonance imaging. Int J Nanomedicine 9:3347–3361

    Google Scholar 

  • Li J, Wub Q, Wu J (2015) Synthesis of nanoparticles via solvothermal and hydrothermal methods. In: Handbook of nanoparticles. Springer, Cham, pp 295–328

    Google Scholar 

  • Li X, Yang Y, Jia Y, Pu X, Yang T, Wang Y, Ma X, Chen Q, Sun M, Wei D, Kuang Y, Li Y, Liu Y (2017) Enhanced tumor targeting effects of a novel paclitaxel-loaded polymer: PEG-PCCL-modified magnetic iron oxide nanoparticles. Drug Deliv 24(1):1284–1294

    Article  CAS  Google Scholar 

  • Liang YJ, Zhang Y, Guo Z, Xie J, Bai T, Zou J, Gu N (2016) Ultrafast preparation of monodisperse Fe3 O4 nanoparticles by microwave-assisted thermal decomposition. Chemistry 22(33): 11807–11815

    Article  CAS  Google Scholar 

  • Liao SH, Liu CH, Bastakoti BP, Suzuki N, Chang Y, Yamauchi Y, Lin FH, Wu KCW (2015) Functionalized magnetic iron oxide/alginate core-shell nanoparticles for targeting hyperthermia. Int J Nanomedicine 10:3315–3328

    Article  CAS  Google Scholar 

  • Lim JK, Lanni C, Evarts ER, Lanni F, Tilton RD, Majetich SA (2011) Magnetophoresis of nanoparticles. ACS Nano 8:217–226

    Article  CAS  Google Scholar 

  • Lim JK, Yeap SP, Che HX, Low SC (2013) Characterization of magnetic nanoparticle by dynamic light scattering. Nanoscale Res Lett 8(1):381

    Article  CAS  Google Scholar 

  • Liu MC, Jin SF, Zheng M, Wang Y, Zhao PL, Tang DT, Chen J, Lin JQ, Wang XH, Zhao P (2016) Daunomycin-loaded superparamagnetic iron oxide nanoparticles: preparation, magnetic targeting, cell cytotoxicity, and protein delivery research. J Biomater Appl 31(2):261–272

    Article  CAS  Google Scholar 

  • Lopez RG, Pineda MG, Hurtado G, Díaz de León R, Fernández S, Saade H, Bueno D (2013) Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int J Mol Sci 14(10):19636–19650

    Article  CAS  Google Scholar 

  • Lu A, Salabas EL, Sch F (2007) Magnetic Nanoparticles: synthesis, Protection, Functionalization, and Application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  • Luo X, Peng X, Hou J, Wu S, Shen J, Wang L (2017) Folic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer. Int J Nanomedicine 12:5331–5343

    Article  CAS  Google Scholar 

  • Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul 41:189–2077

    Article  CAS  Google Scholar 

  • Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H (2013) Magnetic nanoparticle drug delivery systems for targeting tumor. Appl Nanosci 4:385–392

    Article  CAS  Google Scholar 

  • Monteiro AP, Caminhas LD, Ardisson JD, Paniago R, Cortés ME, Sinisterra RD (2017) Magnetic nanoparticles coated with cyclodextrins and citrate for irinotecan delivery. Carbohydr Polym 1(163):1–9

    Article  CAS  Google Scholar 

  • Nadeem M, Ahmad M, Akhtar MS, Shaari A, Riaz S, Naseem S, Masood M, Saeed MA (2016) Magnetic properties of polyvinyl alcohol and doxorubicine loaded iron oxide nanoparticles for anticancer drug delivery applications. PLoS One 11(6):e0158084

    Article  CAS  Google Scholar 

  • Nagesh PKB, Johnson NR, Boya VKN, Chowdhury P, Othman SF, Khalilzad-Sharghi V, Hafeez BB, Ganju A, Khan S, Behrman SW, Zafar N, Chauhan SC, Jaggi M, Yallapu MM (2016) PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf B Biointerfaces 144:8–20

    Article  CAS  Google Scholar 

  • Nagesh PKB, Chowdhury P, Hatami E, Boya VKN, Kashyap VK, Khan S, Hafeez BB, Chauhan SC, Jaggi M, Yallapu MM (2018) miRNA-205 nanoformulation sensitizes prostate cancer cells to chemotherapy. Cancers (Basel) 10(9):pii: E289

    Article  Google Scholar 

  • Oh Y, Moorthy MS, Manivasagan P, Bharathiraja S, Oh J (2017) Magnetic hyperthermia and pH-responsive effective drug delivery to the sub-cellular level of human breast cancer cells by modified CoFe2O4 nanoparticles. Biochimie 133:7–19

    Article  CAS  Google Scholar 

  • Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3(12):891–895

    Article  CAS  Google Scholar 

  • Park J, Lee E, Hwang NM, Kang MS, Kim SC et al (2005) One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed 44(19): 2872–2877

    Article  CAS  Google Scholar 

  • Parsian M, Unsoy G, Mutlu P, Yalcin S, Tezcaner A, Gunduz U (2016) Loading of Gemcitabine on chitosan magnetic nanoparticles increases the anti-cancer efficacy of the drug. Eur J Pharmacol 5(784):121–128

    Article  CAS  Google Scholar 

  • Parvanian S, Mostafavi SM, Aghashiri M (2017) Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Biosensing Res 13:81–87

    Article  Google Scholar 

  • Pazos-Perez N, Gao Y, Hilgendorff M, Irsen S, Pérez-Juste J, Spasova M, Farle M, Liz-Marzán LM, Giersig M (2007) Magnetic-noble metal nanocomposites with morphology-dependent optical response. Chem Mater 19:4415–4422

    Article  CAS  Google Scholar 

  • Peng H, Cui B, Li G, Wang Y, Li N, Chang Z, Wang Y (2015) A multifunctional β-CD-modified Fe3O4@ZnO:Er(3+),Yb(3+) nanocarrier for antitumor drug delivery and microwave-triggered drug release. Mater Sci Eng C Mater Biol Appl 46:253–263

    Article  CAS  Google Scholar 

  • Peternele WS, Fuentes VM, Fascineli ML, Silva JR, Silva RC, Lucci CM, Azevedo RB (2014) Experimental investigation of the coprecipitation method: an approach to obtain magnetite and maghemite nanoparticles with improved properties. J Nanomater 10:682985

    Google Scholar 

  • Pourianazar NT, Gunduz U (2016) CpG oligodeoxynucleotide-loaded PAMAM dendrimer-coated magnetic nanoparticles promote apoptosis in breast cancer cells. Biomed Pharmacother 78:81–91

    Article  CAS  Google Scholar 

  • Prabha G, Raj V (2017) Sodium alginate-polyvinyl alcohol-bovin serum albumin coated Fe3O4 nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater Sci Eng C Mater Biol Appl 79:410–422

    Article  CAS  Google Scholar 

  • Quinto CA, Mohindra P, Tong S, Bao G (2015) Multifunctional superparamagnetic iron oxide nanoparticles for combined chemotherapy and hyperthermia cancer treatment. Nanoscale 7(29):12728–12736

    Article  CAS  Google Scholar 

  • Rana S, Shetake NG, Barick KC, Pandey BN, Salunke HG, Hassan PA (2016) Folic acid conjugated Fe3O4 magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Trans 45(43):17401–17408

    Article  CAS  Google Scholar 

  • Rascol E, Daurat M, Da Silva A, Maynadier M, Dorandeu C, Charnay C, Garcia M, Lai-Kee-Him J, Bron P, Auffan M, Liu W, Angeletti B, Devoisselle JM, Guari Y, Gary-Bobo M, Chopineau J (2017) Biological fate of Fe3O4 core-shell mesoporous silica nanoparticles depending on particle surface chemistry. Nanomaterials (Basel) 7(7):pii: E162

    Article  CAS  Google Scholar 

  • Rastegari B, Karbalaei-Heidari HR, Zeinali S, Sheardown H (2017) The enzyme-sensitive release of prodigiosin grafted β-cyclodextrin and chitosan magneticnanoparticles as an anticancer drug delivery system: synthesis, characterization and cytotoxicity studies. Colloids Surf B Biointerfaces 18(158):589–601

    Article  CAS  Google Scholar 

  • Richard B, Lemyre JL, Ritcey AM (2017) Nanoparticle size control in microemulsion synthesis. Langmuir 33(19):4748–4757

    Article  CAS  Google Scholar 

  • Rose PA, Praseetha PK, Bhagat M, Alexander P, Abdeen S, Chavali M (2013) Drug embedded PVP coated magnetic nanoparticles for targeted killing of breast cancer cells. Technol Cancer Res Treat 12(5):463–472

    Article  CAS  Google Scholar 

  • Sanna V, Pala N, Sechi M (2014) Targeted therapy using nanotechnology: focus on cancer. Int J Nanomedicine 9:467–483

    CAS  Google Scholar 

  • Setua S, Khan S, Yallapu MM, Behrman SW, Sikander M, Khan SS, Jaggi M, Chauhan SC (2017) Restitution of tumor suppressor MicroRNA-145 using magnetic nanoformulation for pancreatic cancer therapy. J Gastrointest Surg 21(1):94–105

    Article  Google Scholar 

  • Shabestari Khiabani S, Farshbaf M, Akbarzadeh A, Davaran S (2017) Magnetic nanoparticles: preparation methods, applications in cancer diagnosis and cancer therapy. Artif Cells Nanomed Biotechnol 45(1):6–17

    Article  CAS  Google Scholar 

  • Shen L, Qiao Y, Guo Y, Meng S, Yang G, Wu M, Zhao J (2014) Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles. Ceram Int 40:1519–1524

    Article  CAS  Google Scholar 

  • Silva LP, Lacava ZGM, Buske N, Morais PC, Azevedo RB (2004) Atomic force microscopy and transmission electron microscopy of biocompatible magnetic fluids: a comparative analysis. J Nanopart Res 8:209–213

    Article  Google Scholar 

  • Soni S, Salhotra A, Suar M (2014) Handbook of Research on Diverse Applications of Nanotechnology in Biomedicine, Chemistry, and Engineering. IGI Global

    Google Scholar 

  • Sood A, Arora V, Shah J, Kotnala RK, Jain TK (2017) Multifunctional gold coated iron oxide core-shell nanoparticles stabilized using thiolated sodium alginate for biomedical applications. Mater Sci Eng C Mater Biol Appl 80:274–281

    Article  CAS  Google Scholar 

  • Sosnovik DE, Nahrendorf M, Weissleder R (2007) Molecular magnetic resonance imaging in cardiovascular medicine. Circulation 115(15):2076–2086

    Article  Google Scholar 

  • Stankic S, Suman S, Haque F, Vidic J (2016) Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J Nanobiotechnol 14(1):73

    Article  CAS  Google Scholar 

  • Stephen ZR, Dayringer CJ, Lim JJ, Revia RA, Halbert MV, Jeon M, Bakthavatsalam A, Ellenbogen RG, Zhang M (2016) Approach to rapid synthesis and functionalization of iron oxide nanoparticles for high gene transfection. ACS Appl Mater Interfaces 8(10):6320–6328

    Article  CAS  Google Scholar 

  • Strojan K, Lojk J, Bregar VB, Erdani-Kreft M, Svete J, Veranič P, Pavlin M (2017) In vitro assessment of potential bladder papillary neoplasm treatment with functionalized polyethyleneimine coated magnetic nanoparticles. Acta Chim Slov 64(3):543–548

    Article  CAS  Google Scholar 

  • Sulaiman GM, Tawfeeq AT, Naji AS (2017) Biosynthesis, characterization of magnetic iron oxide nanoparticles and evaluations of the cytotoxicity and DNA damage of human breast carcinoma cell lines. Artif Cells Nanomed Biotechnol 21:1–15

    Google Scholar 

  • Sun Z, Song X, Li X, Su T, Qi S, Qiao R, Wang F, Huan Y, Yang W, Wang J, Nie Y, Wu K, Gao M, Cao F (2014) In vivo multimodality imaging of miRNA-16 iron nanoparticle reversing drug resistance to chemotherapy in a mouse gastric cancer model. Nanoscale 6(23):14343–14353

    Article  CAS  Google Scholar 

  • Sundaram PA, Augustine R, Kannan M (2012) Extracellular biosynthesis of iron oxide nanoparticles by Bacillus subtilis strains isolated from rhizosphere soil. Biotechnol Bioprocess Eng 4:835–840

    Article  CAS  Google Scholar 

  • Tarvirdipour S, Vasheghani-Farahani E, Soleimani M, Bardania H (2016) Functionalized magnetic dextran-spermine nanocarriers for targeted delivery of doxorubicin to breast cancer cells. Int J Pharm 501(1–2):331–341

    Article  CAS  Google Scholar 

  • Thorek DLJ, Chen A, Czupryna J, Tsourkas A (2006) Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1):23–38

    Article  Google Scholar 

  • Unterweger H, Janko C, Schwarz M, Dézsi L, Urbanics R, Matuszak J, Őrfi E, Fülöp T, Bäuerle T, Szebeni J, Journé C, Boccaccini AR, Alexiou C, Lyer S, Cicha I (2017) Non-immunogenic dextran-coated superparamagnetic iron oxide nanoparticles: a biocompatible, size-tunable contrast agent for magnetic resonance imaging. Int J Nanomedicine 12:5223–5238

    Article  CAS  Google Scholar 

  • Vazhnichaya YM, Mokliak YV, Kurapov YA, Zabozlaev AA (2015) Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application. Biomed Khim 61(3):384–388

    Article  CAS  Google Scholar 

  • Wan JQ, Cai W, Feng JT, Meng XX, Liu EZ (2007) In situ decoration of carbon nanotubes with nearly monodisperse magnetite nanoparticles in liquid polyols. J Mater Chem 17:1188–1192

    Article  CAS  Google Scholar 

  • Wang WW, Ruan ML (2007) Microwave-assisted synthesis and magnetic property of magnetite and hematite nanoparticles. J Nanopart Res 9(3):419–426

    Article  CAS  Google Scholar 

  • Wang MD, Shin DM, Simons JW, Nie S (2007) Nanotechnology for targeted cancer therapy. Expert Rev Anticancer Ther 7:833–837

    Article  CAS  Google Scholar 

  • Wang J, Meng G, Tao K, Feng M, Zhao X, Li Z, Xu H, Xia D, Lu JR (2012) Immobilization of lipases on alkyl silane modified magnetic nanoparticles: effect of alkyl chain length on enzyme activity. PLoS One 7(8):e43478

    Article  CAS  Google Scholar 

  • Wang R, Hu Y, Zhao N, Xu FJ (2016a) Well-defined peapod-like magnetic nanoparticles and their controlled modification for effective imaging guided gene therapy. ACS Appl Mater Interfaces 8:11298–11308

    Article  CAS  Google Scholar 

  • Wang J, Wang F, Li F, Zhang W, Shen Y, Zhou D, Guo S (2016b) A multifunctional poly (curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells. J Mater Chem B Mater Biol Med 4(17):2954–2962

    Article  CAS  Google Scholar 

  • Wang R, Degirmenci V, Xin H, Li Y, Wang L, Chen J, Hu X, Zhang D (2018) PEI-coated Fe3O4 nanoparticles enable efficient delivery of therapeutic siRNA targeting REST into glioblastoma cells. Int J Mol Sci 19(8):pii: E2230

    Article  CAS  Google Scholar 

  • Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171

    Article  CAS  Google Scholar 

  • Wu W, Jiang CZ, Vellaisamy AL (2016) Roy designed synthesis and surface engineering strategies of magnetic iron oxide nanoparticles for biomedical applications. Nanoscale 8:19421

    Article  CAS  Google Scholar 

  • Xiong F, Hu K, Yu H, Zhou L, Song L, Zhang Y, Shan X, Liu J, Gu N (2017) A Functional iron oxide nanoparticles modified with PLA-PEG-DG as tumor-targeted MRI contrast agent. Pharm Res 34(8):1683–1692

    Article  CAS  Google Scholar 

  • Yalcin S, Unsoy G, Mutlu P, Khodadust R, Gunduz U (2014) Polyhydroxybutyrate-coated magnetic nanoparticles for doxorubicin delivery: cytotoxic effect against doxorubicin-resistant breast cancer cell line. Am J Ther 21(6):453–461

    Article  Google Scholar 

  • Yalcin S, Khodadust R, Ünsoy G, Garip IC, Mumcuoğlu ZD, Gündüz U (2015) Synthesis and characterization of poly-hydroxybutyrate (PHB) coated magnetic nanoparticles: toxicity analyses on different cell lines. Synth React Inorg M 45:700–708

    Article  CAS  Google Scholar 

  • Yang G, Ma W, Zhang B, Xie Q (2016) The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVPor PEG/PEI. Mater Sci Eng C Mater Biol Appl 62:384–390

    Article  CAS  Google Scholar 

  • Yang Z, Duan J, Wang J, Liu Q, Shang R, Yang X, Lu P, Xia C, Lin W, Dou K (2018) Superparamagnetic iron oxide nanoparticles modified with polyethylenimine and galactose for siRNA targeted delivery in hepatocellular carcinoma therapy. Int J Nanomedicine 13:1851–1865

    Article  CAS  Google Scholar 

  • Yin PT, Shah BP, Lee KB (2014) Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small 10(20):4106–4112

    CAS  Google Scholar 

  • Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW, Lee KB (2018) Overcoming chemoresistance in cancer via combined MicroRNA therapeutics with anticancer drugs using multifunctional magnetic core-shell nanoparticles. ACS Appl Mater Interfaces 10(32):26954–26963

    Article  CAS  Google Scholar 

  • Zavareh S, Mahdi M, Erfanian S, Hashemi-Moghaddam H (2016) Synthesis of polydopamine as a new and biocompatible coating of magnetic nanoparticles for delivery of doxorubicin in mouse breast adenocarcinoma. Cancer Chemother Pharmacol 78(5):1073–1084

    Article  CAS  Google Scholar 

  • Zhao-Liang L, You C-L, Wang B, Lin J-H, Hu X-F, Shan X-Y, Wang M-S, Zheng H-B, Zhang Y-D (2016) Construction of Ang2-siRNA chitosan magnetic nanoparticles and the effect on Ang2 gene expression in human malignant melanoma cells. Oncol Lett 11:3992–3998

    Article  CAS  Google Scholar 

  • Zhu GT, Li XS, Gao Q, Zhao NW, Yuan BF, Feng YQ (2012) Pseudomorphic synthesis of monodisperse magnetic mesoporous silica microspheres for selective enrichment of endogenous peptides. J Chromatogr 1224:11–18

    Article  CAS  Google Scholar 

  • Zhu L, Zhou Z, Mao H, Yang L (2017) Magnetic nanoparticles for precision oncology: theranostic magnetic iron oxide nanoparticles for image-guided and targeted cancer therapy. Nanomedicine (Lond) 12(1):73–87

    Article  CAS  Google Scholar 

  • Zolata H, Afarideh H, Davani FA (2016) Triple therapy of HER2+ cancer using radiolabeled multifunctional iron oxide nanoparticles and alternating magnetic field. Cancer Biother Radiopharm 31(9):324–329

    Article  CAS  Google Scholar 

  • Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14:843–856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serap Yalcin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Yalcin, S., Gündüz, U. (2019). Iron Oxide-Based Polymeric Magnetic Nanoparticles for Drug and Gene Delivery: In Vitro and In Vivo Applications in Cancer. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics