Skip to main content

Recent Trends in Graphene Oxide-Enabled Nanocomposites for Sensing Applications

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Graphene oxide, a century-old material, has attracted the interest of researchers owing to its specific 2D structure and unique electronic, optical, thermal, mechanical, and electrochemical properties. The recent advancements in the field of biotechnology and biomedical engineering are targeted at exploring the biosensing applications of graphene oxide due to its biocompatibility. It is considered to be one of the most versatile material, with wide range of applications which can be tailored by functionalization of the different oxygen-containing groups present in the structure. In this review the focus is on the biosensing applications of graphene oxide, detection of analytes with high sensitivity and selectivity. This would give insight into the designing of feasible protocols for the analysis of therapeutic diseases and environmental safety, thereby improving the quality of human life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akhavan O (2011) Photocatalytic reduction of graphene oxides hybridized ZnO nanoparticles in ethanol. Carbon 49:11–18

    Article  CAS  Google Scholar 

  • Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259

    Article  Google Scholar 

  • Brody H (2011) Hepatitis C. Nature 474(7350):S1–S48

    Article  CAS  Google Scholar 

  • Cambaz ZG, Yushin G, Osswald S, Mochalin V, Gogotsi Y (2008) Noncatalytic synthesis of carbon nanotubes, graphene and graphite on SiC. Carbon 46:841–849

    Article  CAS  Google Scholar 

  • Chang H, Chang C, Tsai Y, Liao C (2012) Electrochemically synthesized graphene/polypyrrole composite and their use in super capacitor. Carbon 50:2331–2336

    Article  CAS  Google Scholar 

  • Chen L, Tang Y, Wang K, Liu C, Luo S (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical applications. Electrochem Commun 13(2):133–137

    Article  CAS  Google Scholar 

  • Cheng ML, Tsai BC, Yang J (2011) Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal Chim Acta 708:89–96

    Article  CAS  Google Scholar 

  • Choudhary S, Marquez M, Alencastro F, Spors F, Zhao Y, Tiwari V (2011) Herpes simplex virus type-1 (HSV-1) entry into human mesenchymal stem cells is heavily dependent on heparan sulfate. J Biomed Biotechnol 2011:264350

    Article  CAS  Google Scholar 

  • Chua CK, Pumera M (2013) Reduction of graphene oxide with substituted borohydrides. J Mater Chem A 1:1892–1898

    Article  CAS  Google Scholar 

  • Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43:291–312

    Article  CAS  Google Scholar 

  • Chung C, Kim YK, Shin D, Ryoo SR, Hong BH, Min DH (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224

    Article  CAS  Google Scholar 

  • Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723

    Article  CAS  Google Scholar 

  • Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5:4380–4391

    Article  CAS  Google Scholar 

  • Dong H, Gao W, Yan F, Ji H, Ju H (2010) Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal Chem 82(13):5511–5517

    Article  CAS  Google Scholar 

  • Dogan HO, Ekinci D, Demir U (2013) Atomic scale imaging and spectroscopic characterization of electrochemically reduced graphene oxide. Surf Sci 611:54–59

    Article  CAS  Google Scholar 

  • Dreyer DR, Todd AD, Bielawski CW (2014) Harnessing the chemistry of graphene oxide. Chem Soc Rev 43:5288–5301

    Article  CAS  Google Scholar 

  • Duan YF, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  • Eigler S, Dotzer C, Hof F, Bauer W, Hirsch A (2013) Sulfur species in graphene oxide. Eur J Chem 19:9490–9496

    Article  CAS  Google Scholar 

  • Fu Y, Zhang J, Liu H, Hiscox WC, Gu Y (2013) Ionic liquid-assisted exfoliation of graphite oxide for simultaneous and functionalization to with improved properties. J Mater Chem A 1:2663–2674

    Article  CAS  Google Scholar 

  • Guo HL, Wang XF, Qian QF, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659

    Article  CAS  Google Scholar 

  • He H, Gao C (2010) Supraparamagnetic, conductive, and processable multifunctional graphene nanosheets coated with high density Fe3O nanoparticle. ACS Appl Mater Inter 2(11):3201–3210

    Article  CAS  Google Scholar 

  • Hilder M, Winther-Jenson B, Li D, Forsyth M, MacFarlene DR (2011) Direct electro- deposition of graphene from aqueous suspensions. Phys Chem Chem Phys 13:9187–9193

    Article  CAS  Google Scholar 

  • Hong BJ, An Z, Compton OC, Nguyen ST (2012) Tunable biomolecular interaction and fluorescence quenching ability of graphene oxide: application to “turn-on” DNA sensing in biological media. Small 8:2469–2476

    Article  CAS  Google Scholar 

  • Hossain MF, Park JY (2014) Amperometric glucose biosensor based on Pt-Pd nanoparticles supported by reduced graphene oxide and integrated with glucose oxidase. Electroanalysis 26:940–951

    Article  CAS  Google Scholar 

  • Huang PJJ, Liu J (2012) Molecular beacon lighting up on graphene oxide. Anal Chem 84:4192–4148

    Article  CAS  Google Scholar 

  • Huang WT, Shi Y, Xie WY, Luo HQ, Li NB (2011) A reversible fluorescence nanoswitch based on bifunctional reduced graphene oxide: use for detection of Hg2+ and molecular logic gate operation. Chem Commun 47(27):7800–7802

    Article  CAS  Google Scholar 

  • Hummers WS Jr, Offemann RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339

    Article  CAS  Google Scholar 

  • Inagaki M, Kang F (2014) Graphene derivatives: graphane, fluorographene, graphene oxide, graphyne and graphdiyne. J Mater Chem A 2:13193–13206

    Article  CAS  Google Scholar 

  • Ivano A, Eotugyn G, Budnikov H, Ricci F, Mosione D, Palleschi G (2003) Cholinesterase sensors based on screen-printed electrodes for the detection of organophosphorous and carbamic pesticides. Anal Bioanal Chem 377:624–631

    Article  CAS  Google Scholar 

  • Jiang Y, Lu Y, Li F, Wu T, Niu L, Chen W (2012) Facile electrochemical codeposition of “clean” graphene-Pd nanocomposite as an anode catalyst for formic acid electrooxidation. Electrochem Commun 19:21–24

    Article  CAS  Google Scholar 

  • Karuppiah C, Cheemalapati S, Chen SM, Palanisamy S (2015) Carboxyl functionalized graphene oxide-modified electrode for the electrochemical determination of non-steroidal anti-inflammatory drug diclofenac. Ionics 21:231–238

    Article  CAS  Google Scholar 

  • Kashefi-Kheyrabadi L, Mehrgardi MA (2012) Aptamer-conjugated silver nanoparticles for electrochemical detection of adenosine triphosphate. Biosens Bioelectron 37:94–98

    Article  CAS  Google Scholar 

  • Khai TV, Na HG, Kwak DS, Kwon YJ, Ham H, Shim KB, Kim HW (2012) Significant enhancement of blue emission and electrical conductivity of N-doped graphene. J Mater Chem 22:17992–18003

    Article  CAS  Google Scholar 

  • Kim S, Ryoo SR, Na HK, Kim YK, Choi BH, Lee Y, Kim DE, Min DH (2013) Deoxyribosome-loaded nano-garphene oxide for simultaneous sensing and silencing of the hepatitis C virus gene in liver cells. Chem Commun 49:8241–8243

    Article  CAS  Google Scholar 

  • Krishnan D, Kim F, Luo J, Cruz-Silva R, Cote LJ, Jang HD, Huang J (2012) Energetic graphene oxide: challenges and opportunities. Nano Today 7:137–152

    Article  CAS  Google Scholar 

  • Laviron E (1974) Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. J Electroanal Chem 52:355–393

    Article  CAS  Google Scholar 

  • Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482

    Article  CAS  Google Scholar 

  • Li J, Zhang Y (2012) Remediation technology for the uranium contaminated environment: a review. Procedia Environ Sci 13:1609–1615

    Article  CAS  Google Scholar 

  • Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high quality and uniform graphene films on copper foils. Science 324:1312–1314

    Article  CAS  Google Scholar 

  • Li S, Li Y, Chen H, Horokawa S, Shen W, Simonian A, Chin BA (2010a) Direct detection of Salmonella typhimurium on fresh produce using phage based magnetoelastic biosensors. Biosens Bioelectron 26:1313–1319

    Article  CAS  Google Scholar 

  • Li H, Li Y, Cheng J (2010b) Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids. Chem Mater 22:2451–2457

    Article  CAS  Google Scholar 

  • Li F, Feng Y, Zho C, Li P, Tang B (2012) A sensitive graphene oxide-DNA based sensing platform for fluorescence “turn-on” detection of bleomycin. Chem Commun 48:127–129

    Article  CAS  Google Scholar 

  • Li Y, Bai Y, Li M (2013a) Porous-reduced graphene oxide for fabricating an amperometric acetylcholinesterase biosensor. Sensors Actuators 185:706–712

    Article  CAS  Google Scholar 

  • Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013b) Electrochemical tyrosine sensor based on glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes. Microchim Acta 180:49–58

    Article  CAS  Google Scholar 

  • Li SJ, Du JM, Chen J, Mao NN, Zhang MJ, Pang H (2014a) Electrodeposition of cobalt oxide nanoparticles on reduced graphene oxide: a two dimensional hybrid for enzyme-free glucose sensing. J Solid State Electrochem 18:1049–1056

    Article  CAS  Google Scholar 

  • Li J, Feng H, Feng Y, Liu J, Liu Y, Jiang J, Qian D (2014b) A glassy electrode modified with β-cyclodextrin, multiwalled carbon nanotubes and graphene oxide for sensitive determination of 1, 3-dinitrobenzene. Microchim Acta 181:1369–1377

    Article  CAS  Google Scholar 

  • Liashkovicha L, Hafezib W, Kumb JM, Oberleithnera H, Shahina VJ (2011) Nuclear delivery mechanism of herpes simplex virus type 1 genome. J Mol Recognit 24:414–421

    Article  CAS  Google Scholar 

  • Liu M, Zhang QA, Zho HM, Chen S, Yu HT, Zhang YB, Quan X (2011) Controllable oxidation DNA cleavage-dependent regulation of graphene/DNA interaction. Chem Commun 47:4084–4086

    Article  CAS  Google Scholar 

  • Liu H, Fang G, Zhu H, Li C, Liu C, Wang S (2013a) A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E. Biosens Bioelectron 47:127–132

    Article  CAS  Google Scholar 

  • Liu B, Sun Z, Zhang X, Liu J (2013b) Mechanisms of DNA sensing on graphene oxide. Anal Chem 85:7987–7993

    Article  CAS  Google Scholar 

  • Liu Z, Liu B, Ding J (2014) Fluorescent sensor using DNA-functionalized graphene oxide. Anal Bioanal Chem 406:6885–6902

    Article  CAS  Google Scholar 

  • Loo A, Bonanni A, Pumera M (2013a) Thrombin aptasensing with inherently electroactive graphene oxide nanoplatelets as labels. Nanoscale 5:4758–4762

    Article  CAS  Google Scholar 

  • Loo A, Bonanni A, Pumera M (2013b) Inherently electroactive graphene oxide nanoplatelets as labels for specific protein-target recognition. Nanoscale 5:7844–7848

    Article  CAS  Google Scholar 

  • Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48(26):4785–4787

    Article  CAS  Google Scholar 

  • Lu CH, Zhu CL, Li J, Liu JJ, Chen X, Yang HH (2010) Using graphene to protect DNA from cleavage during cellular delivery. Chem Commun 46:3116–3118

    Article  CAS  Google Scholar 

  • Lu Z, Chen X, Wang Y, Zheng X, Li CM (2015) Aptamer based fluorescence recovery assay for aflatoxin B1 using a quencher system composed of quantum dots and graphene oxide. Microchim Acta 182:571–578

    Article  CAS  Google Scholar 

  • Makarov VL, Hirose Y, Langmore JP (1997) Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666

    Article  CAS  Google Scholar 

  • Manohar S, Mantz AR, Bancroft KE, Hui CY, Jagota A, Vezenov DV (2008) Peeling single stranded DNA from graphite surface to determine oligonucleotide binding energy by force spectroscopy. Nano Lett 8:4365–4372

    Article  CAS  Google Scholar 

  • Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814

    Article  CAS  Google Scholar 

  • Mergeny JL, Lacroiox L, Teulade-Fichou MP, Hounsou C, Guittat L, Hoarau M, Arimondo PB, Vigneron JP, Lehn JM, Riou JF, Garestier T, Helene C (2001) Telomerase inhibitors based on quadruplex ligands selected by a fluorescence assay. Proc Natl Acad Sci U S A 98:3062–3067

    Article  Google Scholar 

  • Millour S, Noel L, Kadar A, Chekri R, Vastel C, Sirot B, Leblanc J, Guerin T (2011) Pb, Hg, Cd, As, Sb and Al levels in foodstuffs from the 2nd French total diet study. Food Chem 126:1787–1799

    Article  CAS  Google Scholar 

  • Morales-Narváez E, Merkoçi A (2012) Graphene oxide as an optical biosensing platform. Adv Mater 24:3298–3308

    Article  CAS  Google Scholar 

  • Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, Klaessig F, Castronova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  Google Scholar 

  • Ning Y, Duan Y, Feng Y, Deng L (2014) Label-free fluorescent aptasensor based on graphene oxide self-assembled probe for the determination of adenosine triphosphate. Anal Lett 47:2350–2360

    Article  CAS  Google Scholar 

  • Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    Article  CAS  Google Scholar 

  • Nurunnabi M, Parvez K, Nafiujjaman M, Revuri V, Khan HA, Feng X, Lee YK (2015) Bio-application of graphene oxide derivatives: drug/gene delivery, imaging, polymeric modification, toxicology, therapeutics and challenges. RSC Adv 5:42141–42161

    Article  CAS  Google Scholar 

  • Paredes JI, Villar-Rodil S, Fernandez-Merino MJ, Guardia L, Martinez-Alonso A, Tascon JMD (2011) Environmentally friendly approaches toward the mass production of process able graphene from graphite oxide. J Mater Chem 21:298–306

    Article  CAS  Google Scholar 

  • Park JS, Na HK, Min DH, Kim DE (2013) Desorption of single-stranded nucleic acids from graphene oxide by disruption of hydrogen bonding. Analyst 138:1745–1749

    Article  CAS  Google Scholar 

  • Peng X, Liu X, Diamond D, Lau KT (2011) Synthesis of electrochemically-reduced graphene oxide film with controllable size and thickness and its use in super capacitor. Carbon 49:3488–3496

    Article  CAS  Google Scholar 

  • Peng H, Huang Z, Zheng Y, Chen W, Liu A, Lin X (2014) A novel nanocomposite matrix based on graphene oxide and ferrocene-branched organically modified sol-gel/chitosan for biosensor application. J Solid State Electrochem 18:1941–1949

    Article  CAS  Google Scholar 

  • Ping J, Wang Y, Fai K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen printed electrode and its electrochemical biosensing applications. Biosens Bioelectron 28:204–209

    Article  CAS  Google Scholar 

  • Prezioso S, Perrozzi F, Giancaterini L, Cantalini C, Treossi E, Palermo V, Nardone M, Santucci S, Ottaviano L (2013) Graphene oxide as a practical solution to high sensitivity gas sensing. J Phys Chem C 117:10683–10690

    Article  CAS  Google Scholar 

  • Pumera M (2011) Graphene in biosensing. Mater Today 14:308–315

    Article  CAS  Google Scholar 

  • Qi B, He L, Bo X, Yang H, Guo L (2011) Electrochemical preparation of free-standing few-layer graphene through oxidation-reduction cycling. Chem Eng J 171:340–344

    Article  CAS  Google Scholar 

  • Sametband M, Kalt I, Gedanken A, Sarid R (2014) Herpes simplex virus Type-1 attachment inhibition by functionalized graphene oxide. ACS Appl Mater Interfaces 6:1228–1235

    Article  CAS  Google Scholar 

  • Schenze J, Forrer HR, Vogelgsang Hungerbiihler K, Bucheli TD (2012) Mycotoxins in the environment: I. Production and emission from an agricultural test field. Environ Sci Technol 46:13067–13075

    Article  CAS  Google Scholar 

  • Shamsipur M, Tabrizi MA (2014) Achieving direct electrochemistry of glucose oxidase by one step electrochemical reduction of graphene oxide and its use in glucose sensing. Mater Sci Eng C 45:103–108

    Article  CAS  Google Scholar 

  • Shao W, Liu H, Liu X, Wang S, Zhang R (2015) Anti-bacterial performances and biocompatibility of bacterial cellulose/graphene oxide composites. RSC Adv 5:4795–4803

    Article  CAS  Google Scholar 

  • Sharma PS, D’Souza F, Kutner W (2013) Graphene and graphene oxide materials for chemo- and biosensing of chemical and biochemical hazards. Top Curr Chem 348:237–265

    Article  CAS  Google Scholar 

  • Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung I, Jin MH, Jeong H, Kim JM, Choi J, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992

    Article  CAS  Google Scholar 

  • Song Y, Qu K, Zho C, Ren J, Qu X (2010) Graphene oxide:intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 22(19):2206–2210

    Article  CAS  Google Scholar 

  • Song J, Xu L, Zhou C, Xing R, Dai L, Song H (2013) Synthesis of graphene oxide based CuO nanoparticles composite electrode for highly enhanced non-enzymatic glucose detection. ACS Appl Mater Interfaces 5:12928–12934

    Article  CAS  Google Scholar 

  • Stankovich S, Dikin DA, Dommett GHB, Kohkhass KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286

    Article  CAS  Google Scholar 

  • Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487

    Article  CAS  Google Scholar 

  • Swathi RS, Sebastian KL (2008) Resonance energy transfer from a dye molecule to graphene. J Chem Phys 129(5):054703

    Article  CAS  Google Scholar 

  • Swathi RS, Sebastian KL (2009) Long range resonance energy transfer from a dye molecule to graphene has (distance)(−4) dependence. J Chem Phys 130:086101

    Article  CAS  Google Scholar 

  • Tang L, Li X, Ji R, Teng KS, Tai G, Ye J, Wei C, Lau SP (2012) Bottom-up synthesis of large-scale graphene oxide nanosheets. J Mater Chem 22:5676–5683

    Article  CAS  Google Scholar 

  • Vinu Mohan AM, Aswini KK, Starvin AM, Biju VM (2013) Amperometric detection of glucose using Prussian blue-graphene oxide modified platinum electrode. Anal Methods 5:1764–1770

    Article  CAS  Google Scholar 

  • Walcarius A, Minteer SD, Wang J, Lin Y, Merkoçi A (2013) Nanomaterials for bio-functionalised electrodes: recent trends. J Mater Chem B 1:4878–4908

    Article  CAS  Google Scholar 

  • Wang W, Lee GJ, Jang KJ, Cho TS, Kim SK (2008) Real-time detection of Fe. EDTA/H2O2-induced DNA cleavage by linear dichroism. Nucleic Acids Res 36:e85

    Article  CAS  Google Scholar 

  • Wang Z, Zhou X, Zhang J, Boef F, Zhang H (2009) Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J Phys Chem C 113:14071–14075

    Article  CAS  Google Scholar 

  • Wang Y, Liu J, Liu L, Sun DD (2011) High-quality reduced graphene oxide-nanocrystalline platinum hybrid materials prepared by simultaneous co-reduction of graphene oxide and chloroplatinic acid. Nanoscale Res Lett 6:241–248

    Article  CAS  Google Scholar 

  • Wang H, Chen T, Wu S, Chu X, Yu R (2012a) A novel biosensor strategy for screening G-quadruplex ligand based on graphene oxide sheets. Biosens Bioelectron 34:88–93

    Article  CAS  Google Scholar 

  • Wang X, Zhong S, He Y, Song G (2012b) A graphene oxide-rhodamine 6G nnaocomposite as turn-on fluorescence probe for selective detection of DNA. Anal Methods 4:360–362

    Article  CAS  Google Scholar 

  • Wang Y, Tang L, Li Z, Lin Y, Li J (2014) In-situ simultaneous monitoring of ATP and GTP using a graphene oxide nanosheet-based sensing platform in living cells. Nat Protoc 9:1944–1955

    Article  CAS  Google Scholar 

  • Xia ZY, Pezzini S, Treossi E, Giambastiani G, Corticelli F, Morandi V, Zanelli A, Bellani V, Palermo V (2013) The exfoliation of graphene in liquids by electrochemical, chemical, and sonication-assisted techniques: a nanoscale study. Adv Funct Mater 23:4684–4693

    Article  CAS  Google Scholar 

  • Yang K, Gong H, Shi X, Wan J, Zhang Y, Liu Z (2013a) In vivo biodistribution and toxicology of functionalized nano-graphene oxide in mice after oral and intraperitoneal administration. Biomaterials 34:2787

    Article  CAS  Google Scholar 

  • Yang Y, Zhuo JW, Zhang YS, Zhou Q, Zhang XH, Chen JH (2013b) Sensitive electrochemical detection of hydroxyl radical based on MBs-DNA-AgNPs nanocomposite. Sensors Actuators B Chem 182:504–509

    Article  CAS  Google Scholar 

  • Yin D, Li Y, Lin H, Guo B, Du Y, Li X, Jia H, Zho X, Tang J, Zhang L (2013a) Functional graphene oxide as a plasmid-based stat3 siRNA carrier inhibits mouse malignant melanoma growth in vivo. Nanotechnology 24:105102

    Article  CAS  Google Scholar 

  • Yin JC, Wang YS, Zhou B, Xiao XL, Xue JH, Wang JC, Wang YS, Qian QM (2013b) A wireless magnetoelastic sensor for uranyl using DNAzyme-graphene oxide and gold nanoparticles based amplification. Sensors Actuators 188:147–155

    Article  CAS  Google Scholar 

  • Zhang H, Sun Y, Gao S, Zhang J, Zhang H, Song D (2013) A novel graphene oxide-based surface plasmon resonance biosensor. Small 9:2537–2540

    Article  CAS  Google Scholar 

  • Zhang H, Huang H, Liu Z, Su X (2014) A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction. Anal Bioanal Chem 406:6925–6932

    Article  CAS  Google Scholar 

  • Zhao H, Ji X, Wang B, Wang N, Li X, Ni R, Ren J (2015a) An ultra-sensitive acetylcholinesterase biosensor based on reduced graphene oxide-Au nanoparticles- βcyclodextrin/prussian blue-chitosan nanocomposites for organophosphorus pesticide detection. Biosens Bioelectron 65:23–30

    Article  CAS  Google Scholar 

  • Zhao J, Liu L, Fen L (2015b) Graphene oxide: physics and applications. SpringerBriefs in physics. https://doi.org/10.1007/978-3-662-44829-8_3

    Book  Google Scholar 

  • Zhu X, Xu S (2010) Determination of L-tyrosine by β-cyclodextrin sensitized fluorescence quenching method. Spectrochim Acta A 77:566–571

    Article  CAS  Google Scholar 

  • Zubir NA, Yacou C, Motuzas J, Zhang X, Diniz da Costa JC (2014) Structural and functional investigation of graphene oxide-Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep 4:4583–4594

    Google Scholar 

Download references

Acknowledgement

Our grateful acknowledgment goes to the Durban University of Technology, South Africa, for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvardhan Kanchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kanchi, S., Thakur, S. (2019). Recent Trends in Graphene Oxide-Enabled Nanocomposites for Sensing Applications. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_13-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_13-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics