Skip to main content

Polymer Hybrid Nanocomposite Fibres

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Advancement in material sciences towards manufacturing facilities, interface engineering technologies, and analytical tools has enabled the researchers to explore the nanomaterials to form variety of polymer and polymer hybrid composites with novel structures and applications. This chapter presents a comprehensive study about polymer and hybrid nanocomposite fibres for academic and industrial research purposes. “Polymer hybrid nanocomposites” are a fascinating class of materials that combine polymers with other materials where one of the phases has nano-dimension to enhance optical, electrical, magnetic, and thermal properties. These materials can be fabricated as gel, particles, film, or fibres. Hybrid nanocomposites have shown a wide range of applications in the area of sensors, display, catalysts, energy storage and generation, filters, and separators.

The chapter begins with an introduction to polymer and polymer hybrid fibres followed by synthesis and characterization of different inorganic or organic material as well as their thermal, optical, electrical, and magnetic properties. It also reviews the preparation routes of polymer hybrid nanocomposite fibres with a detail analysis of physical and chemical properties for various applications such as energy and environment. It also discusses the current challenges in the area with perspectives on the new and futuristic application.

This chapter can provide a platform to the readers to get a better understanding of the basic methods and experimental procedure for synthesis, characterization, and applications of the polymer hybrid nanocomposite fibres.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Akkapeddi MK (2000) Glass fiber reinforced polyamide-6 nanocomposites. Polym Compos 21(4):576–585

    Article  CAS  Google Scholar 

  • Anand SC, Horrocks AR (2016) Handbook of technical textiles; Volume 1: technical textile processes. Elsevier, Sawston, Cambridge

    Google Scholar 

  • Anton F (1944) Method and apparatus for spinning. Google Patents

    Google Scholar 

  • Athijayamani A, Thiruchitrambalam M, Manikandan V, Pazhanivel B (2010) Mechanical properties of natural fibers reinforced polyester hybrid composite. Int J Plast Technol 14:104–116

    Article  CAS  Google Scholar 

  • Botelho EC, Figiel Ł, Rezende MC, Lauke B (2003) Mechanical behavior of carbon fiber reinforced polyamide composites. Compos Sci Technol 63(13):1843–1855

    Article  CAS  Google Scholar 

  • Cater CM, Rhee KC, Hagenmaier RD, Mattil KF (1974) Aqueous extraction – an alternative oilseed milling process. J Am Oil Chem Soc 51(4):137–141

    Article  CAS  Google Scholar 

  • Cheng T-H, Lin S-B, Chen L-C, Chen H-H (2018) Studies of the antimicrobial ability and silver ions migration from silver nitrate-incorporated electrospun nylon nanofibers. Food Packag Shelf Life 16:129–137

    Article  Google Scholar 

  • Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39(19):6565–6573

    Article  CAS  Google Scholar 

  • Deopura BL, Mukherjee AK (1997) Nylon 6 and nylon 66 fibres. In: Gupta VB, Kothari VK (eds) Manufactured fibre technology. Springer, Dordrecht, pp 318–359

    Chapter  Google Scholar 

  • Deshpande AP, Bhaskar Rao M, Lakshmana Rao C (2000) Extraction of bamboo fibers and their use as reinforcement in polymeric composites. J Appl Polym Sci 76(1):83–92

    Article  CAS  Google Scholar 

  • Devi LU, Bhagawan SS, Thomas S (1997) Mechanical properties of pineapple leaf fiber-reinforced polyester composites. J Appl Polym Sci 64(9):1739–1748

    Article  CAS  Google Scholar 

  • Fourné F, Hergeth HH (1999) Synthetic fibers: machines and equipment, manufacture, properties. Hanser, Munich

    Book  Google Scholar 

  • Gohl EPG, Vilensky LD (1983) Textile science. Longman Cheshire, Melbourne

    Google Scholar 

  • Gong X, Chen X, Zhou Y (2018) Chapter 4 - Advanced weaving technologies for high-performance fabrics. In: McLoughlin J and Sabir T (ed) High-Performance Apparel: Materials, Development, and Applications. Woodhead Publishing Series in Textiles, pp 75–112

    Google Scholar 

  • Gupta VB (1997) Solution-spinning processes. In: Gupta VB, Kothari VK (eds) Manufactured fibre technology. Springer, Dordrecht, pp 124–138

    Chapter  Google Scholar 

  • Gupta BS, Afshari M (2009) Chapter 14 - Tensile failure of polyacrylonitrile fibers. In: Bunsell AR (ed) Handbook of tensile properties of textile and technical fibres. Woodhead Publishing Series in Textiles, pp 486–528

    Google Scholar 

  • Harper RJ, Ruppenicker G, Donaldson D (1986) Cotton blend fabrics from polyester core yarns. Text Res J 56(2):80–86

    Article  CAS  Google Scholar 

  • Hassan MM, K K (2018) Multifunctional acrylic fibers prepared via in-situ formed silver nanoparticles: physicochemical, UV radiation protection, and antistatic properties. Dyes Pigments 159:517–526

    Article  CAS  Google Scholar 

  • Heidarshenas M, Kokabi M, Hosseini H (2019) Shape memory conductive electrospun PVA/MWCNT nanocomposite aerogels. Polymer Journal 51:579–590 

    Article  CAS  Google Scholar 

  • Heikkilä P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44(10):3067–3079

    Article  Google Scholar 

  • Holbery J, H D (2006) Natural-fiber-reinforced polymer composites in automotive applications. J Miner Met Mater Soc 58:80–86

    Article  CAS  Google Scholar 

  • Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  CAS  Google Scholar 

  • Huang J, Xu C, Wu D, Lv Q (2017) Transcrystallization of polypropylene in the presence of polyester/cellulose nanocrystal composite fibers. Carbohydr Polym 167:105–114

    Article  CAS  Google Scholar 

  • Insuasty A, Atienza C, López JL, Marco-Martínez J, Casado S, Saha A, Guldi DM, Martín N (2015) Supramolecular One-Dimensional n/p-Nanofibers. Scientific Reports 5(1)

    Google Scholar 

  • Jalili R, Razal JM, Wallace GG (2013) Wet-spinning of PEDOT: PSS/Functionalized-SWNTs composite: a facile route toward production of strong and highly conducting multifunctional fibers. Sci Rep 3:3438

    Article  Google Scholar 

  • Jayaraman K, Kotaki M, Zhang Y, Mo X, Ramakrishna S (2004) Recent advances in polymer nanofibers. J Nanosci Nanotechnol 4(1–2):52–65

    CAS  Google Scholar 

  • Jun-Seo P (2010) Electrospinning and its applications. Adv Nat Sci Nanosci Nanotechnol 1(4):043002

    Google Scholar 

  • Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1(9):546–575

    Article  CAS  Google Scholar 

  • Khan WS, Asmatulu R, Eltabey MM (2013) Electrical and thermal characterization of electrospun PVP nanocomposite fibers. J Nanomater 2013:1

    Google Scholar 

  • Khoddami A, Carr CM, Gong RH (2009) Effect of hollow polyester fibres on mechanical properties of knitted wool/polyester fabrics. Fibers Polym 10(4):452–460

    Article  CAS  Google Scholar 

  • Kuo CJ, Lan WL (2014) 5 – gel spinning of synthetic polymer fibres. In Zhang D (ed) Advances in filament yarn spinning of textiles and polymers. Woodhead Publishing, Sawston, Cambridge, pp 100–112

    Chapter  Google Scholar 

  • Li J (2017) Carbon nanotubes reinforced polypropylene composite material. J Nanomater 2017(1–5):2171356

    Google Scholar 

  • Liu Y, Kumar S (2014) Polymer/carbon nanotube nano composite fibers–a review. ACS Appl Mater Interfaces 6(9):6069–6087

    Article  CAS  Google Scholar 

  • Liu A, Medina L, Berglund LA (2017) High-Strength Nanocomposite Aerogels of Ternary Composition: Poly(vinyl alcohol), Clay, and Cellulose Nanofibrils. ACS Appl. Mater. Interfaces 9:6453−6461 

    Article  CAS  Google Scholar 

  • Mather RR (2015) Chapter 6 – synthetic textile fibres: polyolefin, elastomeric and acrylic fibres. In: Sinclair R (ed) Textiles and fashion. Woodhead Publishing, Sawston, Cambridge, pp 115–138

    Chapter  Google Scholar 

  • Mesbah HA, Buyle-Bodin F (1999) Efficiency of polypropylene and metallic fibres on control of shrinkage and cracking of recycled aggregate mortars. Constr Build Mater 13(8):439–447

    Article  Google Scholar 

  • Mhetre S, Patra P, Kim Y, Warner S (2007) In-situ polymerized nylon 6/mwnt nanocomposite fibers. Res J Text Appar 11(3):35–41

    Article  Google Scholar 

  • Militky J (2009) 9 – the chemistry, manufacture and tensile behaviour of polyester fibers. In: Bunsell AR (ed) Handbook of tensile properties of textile and technical fibres. Woodhead Publishing, Cambridge, pp 223–314

    Chapter  Google Scholar 

  • Moody V, Needles HL (2004) 3 – major fibers and their properties. In: Moody V, Needles HL (eds) Tufted carpet. William Andrew Publishing, Norwich, pp 35–59

    Chapter  Google Scholar 

  • Murase Y, Nagai A (1994) 2 – melt spinning. In: Nakajima T, Kajiwara K, McIntyre JE (eds) Advanced fiber spinning technology. Woodhead Publishing, Cambridge, pp 25–64

    Chapter  Google Scholar 

  • Nirmala R, Navamathavan R, Jin Won J, Jeon K, Afeesh R, Yong Kim H (2012) Electrical characterization of nylon-6 composite nanofibers. J Phys Chem Solids 73(11):1326–1330

    Article  CAS  Google Scholar 

  • Paipitak K, Pornpra T, Mongkontalang P, Techitdheer W, Pecharapa W (2011) Characterization of PVA-chitosan nanofibers prepared by electrospinning. Proced Eng 8:101–105

    Article  CAS  Google Scholar 

  • Parangusan H, Ponnamma D, Al-Maadeed MAA (2018) Stretchable Electrospun PVDFHFP/Co-ZnO Nanofbers as Piezoelectric Nanogenerators. Scientific Reports 8:754–764

    Google Scholar 

  • Qiao Z, Shen M, Xiao Y, Zhu M, Mignani S, Majoral J-P, Shi X (2018) Organic/inorganic nanohybrids formed using electrospun polymer nanofibers as nanoreactors. Coord Chem Rev 372:31–51

    Article  CAS  Google Scholar 

  • Rao KMM, Rao KM (2007) Extraction and tensile properties of natural fibers: Vakka, date and bamboo. Compos Struct 77(3):288–295

    Article  Google Scholar 

  • Reich S, Burgard M, Langner M, Jiang S, Wang X, Agarwal S, Ding B, Yu J, Greiner A (2018) Polymer nanofibre composite nonwovens with metal-like electrical conductivity. npj Flexible Electronics 2:5

    Google Scholar 

  • Saba N, T PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273

    Article  Google Scholar 

  • Salas C (2017) 4 – solution electrospinning of nanofibers. In: Afshari M (ed) Electrospun nanofibers. Woodhead Publishing, Cambridge, pp 73–108

    Chapter  Google Scholar 

  • Sathishkumar TP, N J, Satheeshkumar S (2014) Hybrid fiber reinforced polymer composites – a review. J Reinf Plast Compos 33(5):454–471

    Article  Google Scholar 

  • Sundaray B, Babu VJ, Subramanian V, Natarajan T (2008) Preparation and characterization of electrospun fibers of poly (methyl methacrylate)-single walled carbon nanotube nanocomposites. J Eng Fibers Fabr 3(4), 155892500800300405

    Article  Google Scholar 

  • Tong X, Bin-Jie X (2015) Preparation and characterization of polyester staple yarns nanowrapped with polysulfone amide fibers. Ind Eng Chem Res 54(49):12303–12312

    Article  CAS  Google Scholar 

  • Ugbolue SCO (2017) Polyolefin fibres: structure, properties and industrial applications, 2nd edn. Woodhead Publishing, Amsterdam, p 590

    Google Scholar 

  • Varesano A, Carletto RA, Mazzuchetti G (2009) Experimental investigations on the multi-jet electrospinning process. J Mater Process Technol 209(11):5178–5185

    Article  CAS  Google Scholar 

  • Vasanthan N (2009) 7 – polyamide fiber formation: structure, properties and characterization. In: Eichhorn SJ, Hearle JWS, Jaffe M, Kikutani T (eds) Handbook of textile fibre structure, vol 1. Woodhead Publishing, Cambridge, pp 232–256

    Chapter  Google Scholar 

  • Weedon GC, Weber Jr CP, Harding KC (2005) Ultra high molecular weight polyethylene fibers. Google Patents

    Google Scholar 

  • Wei S, Lizu M, Zhang X, Sampathi J, Sun L, Milner MF (2013) Electrospun poly (vinyl alcohol)/α-zirconium phosphate nanocomposite fibers. High Perform Polym 25(1):25–32

    Article  Google Scholar 

  • White JL, Cakmak M (1986) Orientation development and crystallization in melt spinning of fibers. Adv Polym Technol 6(3):295–337

    Article  CAS  Google Scholar 

  • White JL, Hancock TA (1981) Fundamental analysis of the dynamics, mass transfer, and coagulation in wet spinning of fibers. J Appl Polym Sci 26(9):3157–3170

    Article  CAS  Google Scholar 

  • Yudin VE, Dobrovolskaya IP, Neelov IM, Dresvyanina EN, Popryadukhin PV, Ivan’kova EM, Elokhovskii VY, Kasatkin IA, Okrugin BM, Morganti P (2014) Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydr Polym 108:176–182

    Article  CAS  Google Scholar 

  • Ziabicki A (1976) Fundamentals of fibre formation: the science of fibre spinning and drawing, vol 197. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Kumar, K., Chawla, V., Mishra, S. (2019). Polymer Hybrid Nanocomposite Fibres. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_12-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_12-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics