Skip to main content

Biohybrid Polymer Nanofibers for Sensor and Energy Applications

  • Living reference work entry
  • First Online:
Handbook of Polymer and Ceramic Nanotechnology

Abstract

Electrospun polymeric nanofibers and nanostructures have becomes a versatile need in numerous applications from the lab to different industrial sectors, which can fulfill needs in important applications including basic amenities such as ultrafiltration membranes, medical products, energy storage, and energy harvesting. Nanostructured polymeric materials have a large surface adsorption area and better interactions with other molecules and atoms because of their near-quantum properties with surface energy–tunable electrons. As such, fabrication of films with nanoporous membranes and nanoporous dimensional structures leads to different physical and chemical properties. The classification of polymeric nanomaterials can be differentiated by the presence of nanostructures such as nanospheres, nanocubes, nanofibers, etc. in polymer films. Among them, polymeric nanofibers play an important role because they can be fabricated in bulk at a low cost and offer better efficacy in different applications because their physical and chemical properties can be customized. Among the different methods used for producing nanofiber structures, electrospinning is a versatile method for numerous applications. The versatility of this method depends on the materials used in it for convenience of fabrication of different nanofiber structures. Fabrication can be achieved by integrating and optimizing different collector assemblies, which leads to a top-down approach in bulk fabrication and production. Also, we can achieve various integrated enhancements in electrospinning and in the process of electrospun fiber formation for fabrication of different materials with nanofiber structures. The need for polymeric nanofibers continues to increase to meet essential needs in modern society. This is due to the special properties of nanofiber-structured substrates with high surface adsorption, different surface properties, enhancement of the mechanical properties of bulk material nanostructures (such as increased tensile strength with lesser mass), quantum and subwavelength transmission of light, and optical properties for sensing. This chapter provides a detailed discussion of the above content, mainly focused on biohybrid material enhancement through use of different working principles and techniques for fabrication of sensors and devices for energy storage and energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Angammana CJ, Jayaram SH (2011) Analysis of the effects of solution conductivity on electrospinning process and fiber morphology. IEEE Trans Ind Appl 47(3):1109–1117. https://doi.org/10.1109/TIA.2011.2127431

    Article  CAS  Google Scholar 

  • Bhardwaj N, Kundu SC (2010) Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv 28:325–347

    Article  CAS  Google Scholar 

  • Brendon M, Bakera B, Robert L, Maucka B (2007) The effect of nanofiber alignment on the maturation of engineered meniscus constructs. Biomaterials 28:1967–1977

    Article  Google Scholar 

  • Chen D, Guo X, Wang Z, Wang P, Chen Y, Lin L (2011) Polyaniline nanofiber gas sensors by direct-write electrospinning. Paper presented at the IEEE 24th international conference on Micro Electro Mechanical Systems (MEMS), Cancun, 23–27 Jan 2011

    Google Scholar 

  • Dalton N, Lynch RP, Collins MN, Culebras M (2019) Thermoelectric properties of electrospun carbon nanofibres derived from lignin. Int J Biol Macromol 121:472–479

    Article  CAS  Google Scholar 

  • Dong L, Liu Y, Wang R, Kang W-M, Cheng B-W (2010) Mathematical model of electric field distribution at a critical state in bubble electrospinning. J Fiber Bioeng Inform 3(2). https://doi.org/10.3993/jfbi09201010

  • Erisken C, Kalyon DM, Wang H (2008) A hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibres. Nanotechnology 19:165302

    Article  Google Scholar 

  • Han T, Reneker DH, Yarin AL (2007) Buckling of jets in electrospinning. Polymer 48:6064–6076

    Article  CAS  Google Scholar 

  • He J-H, Kong H-Y, Yang R-R, Hao D, Faraz N, Wang L, Feng C (2012) Review on fiber morphology obtained by bubble electrospinning and blown bubble spinning. Therm Sci 16(5):1263–1279

    Article  Google Scholar 

  • Hohman MM, Shin M, Rutledge G, Brenner MP (2001) Electrospinning and electrically forced jets. I. Stability theory. Phys Fluids 13:2201

    Article  CAS  Google Scholar 

  • Huang C, Chen S, Lai C, Reneker DH, Qiu H, Ye Y, Hou H (2006) Electrospun polymer nanofibres with small diameters. Nanotechnology 17:1558–1563

    Article  CAS  Google Scholar 

  • Inai R, Kotaki M, Ramakrishna S (2005) Structure and properties of electrospun PLLA single nanofibers. Nanotechnology 16:208–213

    Article  CAS  Google Scholar 

  • Jao PF, Machado M, Cheng X, Senior DE (2011) Fabrication of nanoporous membrane and its nonlithographic patterning using electrospinning and stamp-thru-mold (ESTM). Paper presented at the IEEE 24th international conference on Micro Electro Mechanical Systems (MEMS), Cancun, 23–27 Jan 2011

    Google Scholar 

  • Kameoka J, Orth R, Yang Y, Czaplewski D, Mathers R, Coates GW, Craighead HG (2003) A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology 14:1124–1129

    Article  CAS  Google Scholar 

  • Kandas I, Shehata N, Hassounah I, Sobolciak P, Krupa I, Lewis R (2018) Optical fluorescent spider silk electrospun nanofibers with embedded cerium oxide nanoparticles. J Nanophotonics 12(2):026016. https://doi.org/10.1117/1.JNP.12.026016

    Article  Google Scholar 

  • KoĹ‚buk D, Sajkiewicz P, Maniura-Weber K, Fortunato G (2013) Structure and morphology of electrospun polycaprolactone/gelatine nanofibres. Eur Polym J 49:2052–2061

    Article  Google Scholar 

  • Mazoochi T, Hamadanian M, Ahmadi M, Jabbari V (2012) Investigation on the morphological characteristics of nanofibrous membrane as electrospun in the different processing parameters. Int J Ind Chem 3:2

    Article  Google Scholar 

  • Ohkawa K (2015) Nanofibers of cellulose and its derivatives fabricated using direct electrospinning. Molecules 20:9139–9154. https://doi.org/10.3390/molecules20059139

    Article  CAS  Google Scholar 

  • Park J-S (2010) Electrospinning and its applications. Adv Nat Sci Nanosci Nanotechnol 1:043002

    Article  Google Scholar 

  • Peng S, Zhu P, Wu Y, Mhaisalkar SG, Ramakrishna S (2012) Electrospun conductive polyaniline–polylactic acid composite nanofibers as counter electrodes for rigid and flexible dye-sensitized solar cells. RSC Adv 2:652–657. https://doi.org/10.1039/c1ra00618e

    Article  CAS  Google Scholar 

  • Reneker DH, Chun I (1996) Nanometre diameter fibers of polymer, produced by electrospinning. Nanotechnology 7:216–223

    Article  CAS  Google Scholar 

  • Reznik SN, Yarin AL, Theron A, Zussman E (2004) Transient and steady shapes of droplets attached to a surface in a strong electric field. J Fluid Mech 516:349–377. https://doi.org/10.1017/S0022112004000679

    Article  Google Scholar 

  • Sapountzi E, Braiek M, Chateaux J-F, Jaffrezic-Renault N, Lagarde F (2017) Recent advances in electrospun nanofiber interfaces for biosensing devices. Sensors 17:1887. https://doi.org/10.3390/s17081887

    Article  CAS  Google Scholar 

  • Schreiber M, Vivekanandhan S, Mohanty AK, Misra M (2012) A study on the electrospinning behavior and nanofibre morphology of anionically charged lignin. Adv Mater Lett 3(6):476–480. https://doi.org/10.5185/amlett.2012.icnano.336

    Article  CAS  Google Scholar 

  • Shao C, Kim H, Gong J, Lee D (2002) A novel method for making silica nanofibres by using electrospun fibres of polyvinyl alcohol/silica composite as precursor. Nanotechnology 13:635–637

    Article  CAS  Google Scholar 

  • Su X, Ren J, Meng X, Ren X, Tang F (2013) A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 138:1459–1466. https://doi.org/10.1039/c2an36663k

    Article  CAS  Google Scholar 

  • Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ram Kumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96:557–569

    Article  CAS  Google Scholar 

  • Sundaramurthy J, Li N, Kumar PS, Ramakrishna S (2014) Perspective of electrospun nanofibers in energy and environment. Biofuel Res J 2:44–54

    Article  Google Scholar 

  • Sundaray B, Subramanian V, Natarajan TS (2005) Electrical properties of electrospun poly(ethylene oxide) – polypyrrole composite fibers. In: MRS proceedings, vol 889, 0889-W03-08. https://doi.org/10.1557/PROC-0889-W03-08

  • Tang C-C, Chen J-C, Long Y-Z, Yin H-X, Sun B, Zhang H (2011) Preparation of curled microfibers by electrospinning with tip collector. Chin Phys Lett 28(5):056801

    Article  Google Scholar 

  • Teo WE, Ramakrishna S (2006) A review on electrospinning design and nanofibre assemblies. Nanotechnology 17:R89–R106

    Article  CAS  Google Scholar 

  • Teo WE, Kotaki M, Mo XM, Ramakrishna S (2005) Porous tubular structures with controlled fibre orientation using a modified electrospinning method. Nanotechnology 16:918–924

    Article  CAS  Google Scholar 

  • Theron AE, Zussman E, Yarin AL (2001) Electrostatic field-assisted alignment of electrospun nanofibers. Nanotechnology 12:384–390

    Article  Google Scholar 

  • Thoppey NM, Bochinski JR, Clarke LI, Gorga RE (2011) Edge electrospinning for high throughput production of quality nanofibers. Nanotechnology 22:345301

    Article  CAS  Google Scholar 

  • Wang X, Zhang W, Chen M, Zhou X (2018) Electrospun enzymatic hydrolysis lignin-based carbon nanofibers as binder-free supercapacitor electrodes with high performance. Polymers 10:1306. https://doi.org/10.3390/polym10121306

    Article  CAS  Google Scholar 

  • Xie J, MacEwan MR, Willerth SM, Li X, Moran DW, Sakiyama-Elbert SE, Xia Y (2009) Conductive core-sheath nanofibers and their potential application in neural tissue engineering. Adv Funct Mater 19:2312–2318

    Article  CAS  Google Scholar 

  • Yang Y, Jia Z, Li Q, Hou L, Liu J, Wang L, Guan Z (2010) A shield ring enhanced equilateral hexagon distributed multi-needle electrospinning spinneret. IEEE Trans Dielectr Electr Insul 17(5):1592–1601

    Article  Google Scholar 

  • Yu DG, Branford-White C, White K, Chatterton NP, Zhu LM, Huang LY, Wang B (2011) A modified coaxial electrospinning for preparing fibers from a high concentration polymer solution. Express Polym Lett 5(8):732–741

    Article  CAS  Google Scholar 

  • Zargham S, Bazgir S, Tavakoli A, Rashidi AS, Damerchely R (2012) The effect of flow rate on morphology and deposition area of electrospun nylon 6 nanofiber. J Eng Fibers Fabr 7(4):42–49

    CAS  Google Scholar 

  • Zhang YZ, Feng Y, Huang Z-M, Ramakrishna S, Lim CT (2006) Fabrication of porous electrospun nanofibres. Nanotechnology 17:901–908

    Article  CAS  Google Scholar 

  • Zhang Q, Wang X, Fu J, Liu R, He H, Ma J, Yu M, Ramakrishna S, Long Y (2018) Electrospinning of ultrafine conducting polymer composite nanofibers with diameter less than 70 nm as high sensitive gas sensor. Materials 11:1744. https://doi.org/10.3390/ma11091744

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sriram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sriram, K. (2020). Biohybrid Polymer Nanofibers for Sensor and Energy Applications. In: Hussain, C., Thomas, S. (eds) Handbook of Polymer and Ceramic Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-10614-0_10-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-10614-0_10-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-10614-0

  • Online ISBN: 978-3-030-10614-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics