Skip to main content

Thinking About PPFM Bacteria as a Model of Seed Endophytes: Who Are They? Where Did They Come from? What Are They Doing for the Plant? What Can They Do for Us?

  • Chapter
  • First Online:
Seed Endophytes

Abstract

Bacteria in the genus Methylobacterium (PPFM bacteria) are distributed globally and are associated with algae, mosses, ferns, liverworts, gymnosperms and angiosperms as co-evolved symbionts. As such, they share significantly in plant metabolism, stimulating plant growth and development through the production of plant hormones and vitamins. This chapter discusses the PPFMs as model plant symbionts and considers how their symbiotic relationship with plants and be exploited to our benefit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • American Society for Microbiology (2014) Plants prepackage beneficial microbes in their seeds. Science Daily. www.sciencedaily.com/releases/2014/09/140929180055.htm

  • Barret M, Briand M, Bonneau S, Preveaux A, Valiere S, Bouchez O, Hunault G, Simoneau P, Jacques M-A (2015) Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol 81(4):1257–1266

    Article  Google Scholar 

  • Barret M, Guimbaud JF, Darrasse A, Jaques MA (2016) Plant microbiota affects seed transmission of phytopathogenic microorganisms. Mol Plant Pathol 17(6):791–795. https://doi.org/10.1111/mpp.12382

    Article  PubMed  Google Scholar 

  • Barrow JR, Lucero ME, Reyes-Vera I, Havstad KM (2008) Do symbiotic microbes have a role in plant evolution, performance and response to stress? Commun Integr Biol 1(1):69–73

    Article  Google Scholar 

  • Basile DV, Slade LL, Corpe WA (1969) A association between a bacterium and a liverwort, Scapania nemorosa. Bull Torrey Bot Club 96(6):711–714

    Article  Google Scholar 

  • Basile DV, Basile MR, Li QY, Corpe WA (1985) Vitamin B12-stimulated growth and development of Jungermannia leiantha Grolle and Gymnocolea inflata (Huds.) Dum. (Hepaticae). Bryologist 88(2):77–81

    Article  CAS  Google Scholar 

  • Bokulich NA, Lewis ZT, Boundy-Mills K, Mills DA (2016) A new perspective on microbial landscapes within food production. Curr Opin Biotechnol 37:182–189. https://doi.org/10.1016/j.copbio.2015.12.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briand CH, Holland MA (1999) Microbial symbionts and the evolution of fruit. In: Presented at the annual meeting of the American Society of Plant Physiologists, Baltimore, MD, 24–28 July 1999

    Google Scholar 

  • Butler HSK (2001) Contribution of PPFM (Methylobacterium mesophilicum), a bacterial symbiont, to cytokinin content and biomass accumulation in soybean [Glycine max (L.) Merr.] seedlings. Masters Thesis. University of Maryland Eastern Shore, Princess Anne, MD

    Google Scholar 

  • Compant S, Sessitsch A, Mathieu F (2012) The 125th anniversary of the first postulation of the soil origin of endophytic bacteria – a tribute to MLV Galippe. Plant Soil. https://doi.org/10.1007/s11104-012-1204-9

  • Corpe WA (1985) A method for detecting methylotrophic bacteria on solid surfaces. J Microbiol Methods 3:215–321

    Article  Google Scholar 

  • Corpe WA, Basile DV (1982) Methanol utilizing bacteria associated with green plants. Dev Ind Microbiol 23:483–493

    Google Scholar 

  • Corpe WA, Rheem S (1989) Ecology of the methylotrophic bacteria living on leaf surfaces. FEMS Micobiol Ecol 62:243–250

    Article  CAS  Google Scholar 

  • Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438(7064):90–93

    Article  CAS  Google Scholar 

  • Cruz RS, Yanez-Ocampo G, Wong-Villareal A (2014) Effect of nodulating bacteria on the seed germination of Capsicum spp. Afr J Microbiol Res 8(7):659–663. https://doi.org/10.5897/AJMR2013.6494

    Article  Google Scholar 

  • Delshadi S, Ebrahimi M, Shirmohammadi E (2017) Influence of plant-growth-promoting bacteria on germination, growth and nutrients’ uptake of Onobrychis sativa L. under drought stress. J Plant Interact 12(1):200–208. https://doi.org/10.1080/17429145.2017.1316527

    Article  CAS  Google Scholar 

  • Doroninqa NV, Ivanova EG, Trotsenko I (2002) New evidence for the ability of methylobacteria and methanotrophs to synthesize auxins. Microbiology 71:116–118

    Article  Google Scholar 

  • Dunleavy JM (1988) In vitro expression of the cellulose gene in Methylobacterium mesophilicum, a seed-transmitted bacterium ubiquitous in soybean. In: Presented at 2nd biennial conference on the molecular and cellular biology of the soybean, Ames, IA, 25–27 July 1988

    Google Scholar 

  • Fernbach MA (1888) De l’absence des microbes dans les tissus vegetaux. Ann Inst Past 2(10):567

    Google Scholar 

  • Frank AC, Guzmain JPS, Shay JE (2017) Transmission of bacterial endophytes. Microorganisms 5:70. https://doi.org/10.3390/microorganisms5040070

    Article  CAS  PubMed Central  Google Scholar 

  • Freyermuth SK, Long RL, Mathur S, Holland MA, Holtsford TP, Stebbins NE, Morris RO, Polacco JC (1996) Metabolic aspects of plant interaction with commensal methylotrophs. In: Lidstrom M, Tabita R (eds) Microbial growth on C1 compounds. Kluwer Academic, pp 277–284

    Google Scholar 

  • Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7:1971. https://doi.org/10.3389/micb.2016.01971

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman A (2017) Nutrient acquisition: the generation of bioactive vitamin B12 by microalgae. Curr Biol 26:R319–R337. https://doi.org/10.1016/j.cub.2016.02.047

    Article  CAS  Google Scholar 

  • Gunfel PE, Landesmann JB, Martinez-Ghersa MA, Ghersa CM (2007) Effects of Neotyphoduim endophyte infection on seeds viability and germination vigor in Lolium multiflorum under accelerated aging conditions. New Zealand Grassland Association: Endophyte symposium. https://www.grassland.org.nz/publications/nzgrassland_publication_2363.pdf

  • Hassani MA, Duran P, Hacquardo S (2018) Microbial interactions within the plant holobiont. Microbiome 6:58. https://doi.org/10.1186/s40168-018-0445-0

  • Helliwell KE, Wheeler GL, Leptos KC, Goldstein RE, Smith AG (2011) Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol Biol Evol 28(10):2921–2933. https://doi.org/10.1093/molbev/msr124

    Article  CAS  PubMed  Google Scholar 

  • Helliwell KE, Collins S, Kazamia E, Purton S, Wheeler GL, Smith A (2015) Fundamental shift in vitamin B12 eco-physiology of a model alga demonstrated by experimental evolution. ISME J 9:1446–1455. https://www.nature.com/articles/ismej2014230

    Article  CAS  Google Scholar 

  • Herrera SD, Grossi C, Zawoznik M, Groppa MD (2016) Wheat seeds harbor bacterial endophytes with potential as plant growth promoters and biocontrol agents of Fusarium graminearum. Microbiol Res 186–187:37–43

    Article  Google Scholar 

  • Holland MA (1997) Methylobacterium and plants. Rec Res Dev Plant Phys 1:207–213

    Google Scholar 

  • Holland MA (2011) Nitrogen: give and take from phylloplane microbes. In: Polacco JC, Todd CD (eds) Ecological aspects of nitrogen metabolism in plants. Wiley-Blackwell, London, pp 217–230. ISBN 978-0-8138-1649-4

    Google Scholar 

  • Holland MA (2016) Probiotics for plants? What the PPFMs told us and some ideas about how to use them. J Wash Acad Sci 102(1):31–42

    Google Scholar 

  • Holland MA, Polacco JC (1992) Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol 98:942–948

    Article  CAS  Google Scholar 

  • Holland MA, Polacco JC (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu Rev Plant Physiol Plant Mol Biol 45:197–209

    Article  CAS  Google Scholar 

  • Holland MA, Polacco JC (1996) Seeds, coated or impregnated with a pink pigmented facultative methylotroph, having improved germinability. U.S. Patent # 5,512,069

    Google Scholar 

  • Holland MA, Polacco JC (2006) A method for altering the metabolism of a plant. U.S. Patent # 8,153,118

    Google Scholar 

  • Holland MA, Davis R, Moffitt S, O’Laughlin K, Peach D, Sussan S, Wimbrow L, Tayman B (2000) Using “leaf prints” to investigate a common bacterium. Am Biol Teach 62(2):128–131

    Article  Google Scholar 

  • Holland MA, Long RLG, Polacco JC (2002) Methylobacterium spp.: Phylloplane bacteria involved in cross-talk with the plant host? In: Lindow SE, Hecht-Poinar EI, Elliot VJ (eds) Phyllosphere microbiology. APS Press, St. Paul, MN, pp 125–135

    Google Scholar 

  • Jalilian J, Modarres-Sanavy SAM, Saberali SF, Sadat-Asilan K (2012) Effects of the combination of beneficial microbes and nitrogen on sunflower seed yields and seed quality traits under different irrigation regimes. Field Crop Res 127:26–34. https://doi.org/10.1016/j.fcr.2011.11.001

    Article  Google Scholar 

  • Jimenez-Gomez A, Celador-Lera L, Fradejas-Bayon M, Rivas R (2017) Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiol 3(3):483–501. https://doi.org/10.3934/miocrobiol.2017.3.483

    Article  CAS  Google Scholar 

  • Johnston-Monje D, Raizada M (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One 6(6):e20396

    Article  CAS  Google Scholar 

  • Joshi JM, Holland MA (1999) Method for treating plants. U.S. Patent # 5,961,687

    Google Scholar 

  • Joshi JM, Holland MA (2001a) Method for treating plants. US Patent # 6,174,837

    Google Scholar 

  • Joshi JM, Holland MA (2001b) Method for treating plants. U.S. Patent # 6,329,320

    Google Scholar 

  • Kelly SM (2015) Altering growth rates and nutritional qualities of microalgal feedstocks with symbiotic bacteria. Masters Thesis. Salisbury University, Salisbury, MD

    Google Scholar 

  • Khalaf EM, Raizada MN (2018) Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front Microbiol 9:42. https://doi.org/10.3389/micb.2018.00042

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig RL, Morris RO, Polacco JC (2002) tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J Bacteriol 184:1832–1842

    Article  CAS  Google Scholar 

  • Lawrence AD, Nemoto-Smith E, Deery E, Boshoff HI, Barry CE III, Warren MJ (2018) Construction of fluorescent analogs to follow the uptake and distribution of cobalamin (Vitamin B12) in bacteria, worms, and plants. Cell Chem Biol. https://doi.org/10.1016/j.chembiol.2018.04.012

  • Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224(2):268–278

    Article  CAS  Google Scholar 

  • Mitter B, Sessitsch A, Naveed M (2012) Method for producing plant seed containing endophytic micro-organisms. Patent Application EP267536A1

    Google Scholar 

  • Mitter B, Pfaffenbichler N, Flavell R, Compant S, Antonielli L, Petric A, Berninger T, Naveed M, Sheibani-Tezerji R, vonMaltzahn G, Sessitsch A (2017) A new approach to modify plant microbiomes and traits by introducing beneficial bacterial at flowering into progeny seeds. Front Microbiol 8:11. https://doi.org/10.3389/fmicb.2017.00011

    Article  PubMed  PubMed Central  Google Scholar 

  • Morsy M (2015) Microbial symbionts: a potential bio-boom. J Investig Genom 2(1):00015

    Google Scholar 

  • Mundt JO, Hinkle NF (1976) Bacteria within ovules and seeds. Appl Environ Microbiol 32(5):694–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Munsanje EM (1999) Potential of a cytokinin-excreting Methylobacterium as a biofertilizer in soybean production. PhD Dissertation. University of Maryland Eastern Shore, Princess Anne, MD

    Google Scholar 

  • Munsanje EM, Holland MA, Joshi JM (1998) The significance of PPFM foliar spray on soybean yield. In: Dadson RB, Noureldin RA (eds) Soybeans in Egypt: research, production, economics, nutrition and health. University of Maryland Press, Bethesda, MD, pp 69–78

    Google Scholar 

  • O’Callaghan M (2016) Microbial inoculation of seed for improved crop performance: issues and opportunities. Appl Microbiol Biotechnol 100:5729–5746. https://doi.org/10.1007/s00253-016-7590-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omer ZS, Tombolini R, Gerhardson B (2004) Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol Ecol 47:319–326

    Article  CAS  Google Scholar 

  • Pitzschke A (2016) Developmental peculiarities and seed-borne endophytes in quinoa: omnipresent, robust bacilli contribute to plant fitness. Front Micro 7:article 2. https://doi.org/10.3389/fmicb.2016.00002

    Article  Google Scholar 

  • Pohjanen J, Koskimaki JJ, Pirttila AM (2014) Interactions of meristem-associated endophytic bacteria. In: Verma VJ, Gange AC (eds) Advances in endophytic research. Springer. https://doi.org/10.1007/978-81-322-1575-2

  • Polacco JC, Holland MA (1993) A method for altering the metabolism of a plant. U.S. Patent # 5,268,171

    Google Scholar 

  • Rahman M, As Sabir A, Mukta JA, Khan MMA, Mohi-Ud-Din M, Miah MG, Rahman M, Islam MT (2018) Plant probiotic bacteria Bacillus and Paraburkholderia improve growth, yield and content of antioxidants in strawberry fruit. Sci Rep 8:2504. https://doi.org/10.1038/s41598-018-20235-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues Pereira AS, Houwen PWJ, Deurenberg-Vos HWJ, Pey EBF (1972) Cytokinins and the bacterial symbiosis os Ardisia species. Z Pflanzenphysiol 68:170–177

    Article  CAS  Google Scholar 

  • Romine MF, Rodionov DA, Maezato Y, Andersona LN, Nandhikonda P, Rodionova IA, Carred A, Li X, Xu C, Clauss TRW, Kim YM, Metz TO, Wright AT (2017) Elucidation of roles for vitamin B12 in regulation of folate, ubiquinone, and methionine metabolism. Proc Natl Acad Sci USA. doi:https://doi.org/10.1073/pnas.1612360114

  • Samova LA, Pechurkin NS, Sarangove AB, Pisman TI (2001) Effect of bacterial population density on germination wheat seeds and dynamics of simple artificial ecosystems. Adv Space Res 27(9):1611–1615

    Article  Google Scholar 

  • Sanchez-Lopez AS, Pintelon I, Stevens V, Imperato V, Timmermans JP, Gonzalez-Chavez C, Carillo-Gonzalez R, Van Hamme J, Vangronsveld J, Thijs S (2018) Seed endophyte microbiome of Crotalaria pumila unpeeled: identification of plant-beneficial methylobacteria. Int J Mol Sci 19:291. https://doi.org/10.3390/jims19010291

    Article  PubMed Central  Google Scholar 

  • Sato K, Kudo Y, Muramatsu K (2004) Incorporation of a high level of vitamin B12 into a vegetable, kaiware daikon (Japanese radish sprout), by the absorption from its seeds. Biochim Biophys Acta 1672:135–137

    Article  CAS  Google Scholar 

  • Shahzad R, Khan AL, Bilal S, Asaf S, Lee I (2018) What is there in seeds? Vertically transmitted endophytic resources for sustainable improvement in plant growth. Front Plant Sci 9:24. https://doi.org/10.3389/fpls.2018.00024

    Article  PubMed  PubMed Central  Google Scholar 

  • Shuang S, Zhenfang G, Xiaolei G (2015) The effect of bacteria on seed germination in sorghum and rape under cadmium and petroleum conditions. Int J Biotechnol Wellness Indus 4:123–127

    Article  Google Scholar 

  • Siddikee A, Hamayun M, Han G-H, Sa T-m (2010) Optimization of gibberellic acid production by Methylobacterium oryzae CBMB20 Md. Korean J Soil Sci Fert 43(4):522–527

    Google Scholar 

  • Sudre C, Akiba F (2015) Influence of effective microorganisms on seed germination and plantlet vigor of selected crops. https://www.researchgate.net/publication/265524659

    Google Scholar 

  • Sy A, Giraud E, Jourand P, Garcia N, Willems A, De L Prin Y, Neyra M, Gillis M, Boivin M, Dreyfus B (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  CAS  Google Scholar 

  • Taga ME, Walker GC (2010) Sinorhizobium meliloti requires a cobalamin-dependent ribonucleotide reductase for symbiosis with its plant host. MPMI 23(12):1643–1654. https://doi.org/10.1094/MPMI-07-10-0151

    Article  CAS  PubMed  Google Scholar 

  • Taylor GT, Sullivan CW (2008) Vitamin B12 and cobalt cycling among diatoms and bacteria in Antarctic sea ice microbial communities. Limnol Oceanogr 53(5):1862–1877

    Article  CAS  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Vaughan MJ, Mitchell T, Mc Spadden Gardener BB (2015) What’s inside the bean we brew? A new approach to mining the coffee microbiome. Appl Environ Microbiol 81(19):6518–6527. https://doi.org/10.1128/AEM.01933-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walitang DI, Kim K, Madhaiyan M, Kim YK, Kang Y, Sa T (2017) Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice. BMC Microbiol 17:209. https://doi.org/10.1186/s12866-1117-0

    Article  PubMed  PubMed Central  Google Scholar 

  • White JF Jr, Johnson H, Torres MS Irizarry I (2012) Nutritional endosymbiotic systems in plants: bacteria function like “quasi-organelles” to convert atmospheric nitrogen into plant nutrients. J Plant Pathol Microb 3:7. https://doi.org/10.4172/2157-7471.1000e104

    Article  CAS  Google Scholar 

  • Witzig SB, Holland MA (1998) A microbial symbiont used to alter the nutritional quality of plants. Presented at the annual meeting of the American Society of Plant Physiologists, Madison, WI, 27 June–2 July

    Google Scholar 

  • Wu CH, Bernard SM, Andersen GL, Chen W (2009) Developing microbe-plant interactions for applications in plant-growth promotion and disease control, production of useful compounds, remediation and carbon sequestration. Microb Biotechnol 2(4):428–440

    Article  CAS  Google Scholar 

  • Yarzabal LA, Monserrate L, Buela L, Chica E (2018) Antarctic Pseudomonas spp. promote wheat growth at low temperature. Polar Biol. https://doi.org/10.1007/s00300-018-2374-6

  • Yousaf A, Qadir A, Anjum T, Ahmad A (2015) Identification of microbial metabolites elevating vitamin contents in barley seeds. J Agric Food Chem 63:7301–7310

    Article  Google Scholar 

  • Yousaf A, Qadir A, Anjum T, Khan Dr RI, Naughton D, Yousaf A (2017) Evaluation of bacterial strains for the induction of plant biochemicals, nutritional contents and isozymes in barley. J Nutr Food Sci 7(5):1000623. https://doi.org/10.4172/2155-9600.1000623

    Article  Google Scholar 

  • Zhu YL, She XP, Wang JS, Lv HY (2017) Endophytic bacterial effects on seed germination and mobilization of reserves in Ammodendron biofolium. Pak J Bot 49(5):2029–2035

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Holland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holland, M.A. (2019). Thinking About PPFM Bacteria as a Model of Seed Endophytes: Who Are They? Where Did They Come from? What Are They Doing for the Plant? What Can They Do for Us?. In: Verma, S., White, Jr, J. (eds) Seed Endophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-10504-4_2

Download citation

Publish with us

Policies and ethics