Skip to main content

Bioactive Compounds of California Fan Palm Washingtonia filifera (Linden ex André) H. Wendl. ex de Bary

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Fruits and Nuts

Abstract

The fruit of the California fan palm (Washingtonia filifera) is underutilized. Phytochemical analysis of the fruit has demonstrated its high nutritional values. The fruit is a good source of carbohydrates, soluble sugars, and minerals including calcium, phosphorus, potassium, magnesium, and zinc. The fruit has several bioactive compounds having antioxidant, antibacterial, antifungal, and anti-inflammatory properties. Moreover, unlike other palm species, W. filifera tree is resistant to red palm weevil, which encourages its cultivation as a potential widely used food source.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. The Plant List (2019) Washingtonia. 16 May 2019. http://www.theplantlist.org/tpl1.1/search?q=Washingtonia

  2. Johnson DV (1998) Non-wood forest products 10: tropical palms. Food and Agriculture Organization of the United States (FAO), Rome

    Google Scholar 

  3. Bomhard ML (1950) Palm trees in the United States. Agriculture information bulletin, vol 22. U.S. Department of Agriculture, Forest Service, Washington, DC, p 26

    Google Scholar 

  4. Sudworth GB (1908) Forest trees of the Pacific slope. U.S. Department of Agriculture. Forest Service, Washington, DC, p 441

    Book  Google Scholar 

  5. Jepson WL (1910) The silva of California, vol 2. University of California Press, Berkeley, p 283

    Google Scholar 

  6. DeMason DA (1988) Embryo structure and storage reserves histochemistry in the palm Washingtonia filifera. Am J Bot 75:330–337. https://doi.org/10.1002/j.1537-2197.1988.tb13447.x

    Article  Google Scholar 

  7. Cornett JW (1985) Unpublished notes. The Palm Springs Desert Museum. Palm Springs. https://doi.org/10.1016/0022-1759(85)90439-9

    Article  CAS  PubMed  Google Scholar 

  8. Turner RJ Jr, Wasson E (1997) Botanica: the illustrated A-Z of over 10,000 garden plants and how to cultivate them. Mynah, New York

    Google Scholar 

  9. Star F, Star K, Loope L (2003) Washingtonia spp. Mexican fan palm and California fan palm, Arecaceae. http://www.hear.org/Pier/pdf/pohreports/Washingtonia_spp.pdf. Accessed 24 Mar 2019

  10. Watson RR, Preedy VR (2009) Bioactive foods in promoting health: fruits and vegetables. Academic, New York

    Google Scholar 

  11. Cornett JW (1987) Nutritional value of desert fan palm fruits. Principes 31:159–161

    Google Scholar 

  12. Facciola S (1990) Cornucopia – a source book of edible plants. Kampong Publications, Vista. ISBN 0-9628087-0-9

    Google Scholar 

  13. Nehdi IA (2011) Characteristics and composition of Washingtonia filifera H. Wendl. seed and seed oil. Food Chem 126:197–202. https://doi.org/10.1016/j.foodchem.2010.10.099

    Article  CAS  Google Scholar 

  14. Amira EA, Behija SE, Beligh M, Lamia L, Manel I, Mohamed H, Lotfi A (2012) Effects of the ripening stage on phenolic profile, phytochemical composition and antioxidant activity of date palm fruit. J Agric Food Chem 60:10896–10902. https://doi.org/10.1021/jf302602v

    Article  CAS  Google Scholar 

  15. Haider MS, Khan IA, Jaskani MJ, Naqvi SA, Khan MM (2014) Biochemical attributes of dates at three maturation stages. Emir J Food Agric 26:953–962. https://doi.org/10.9755/ejfa.v26i11.18980

    Article  Google Scholar 

  16. Lemine M, Mint F, Mohamed Ahmed MVO, Ben Mohamed Maoulainine L, Bouna Zel AO, Samb A, Boukhary AOMSO (2014) Antioxidant activity of various Mauritanian date palm (Phoenix dactylifera L.) fruits at two edible ripening stages. Food Sci Nutr 2:700–705. https://doi.org/10.1002/fsn3.167

    Article  CAS  Google Scholar 

  17. Nasri N, Khaldi A, Fady B, Triki S (2005) Fatty acids from seeds of Pinus pinea L.: composition and population profiling. Phytochemistry 66:1729–1735. https://doi.org/10.1016/j.phytochem.2005.05.023

    Article  CAS  PubMed  Google Scholar 

  18. Hemmati AA, Kalantari H, Siahpoosh A, Ghorbanzadeh B, Jamali H (2015) Anti-inflammatory effect of hydroalcoholic extract of the Washingtonia filifera seeds in carrageenan-induced Paw edema in rats. Jundishapur J Nat Pharm Prod 10:e19887. https://doi.org/10.17795/jjnpp-19887

    Article  Google Scholar 

  19. Mazmanci MA (2011) Ethanol production from Washingtonia robusta fruits by using commercial yeast. Afr J Biotechnol 10:43–48

    Google Scholar 

  20. Aparna V, Dileep KV, Mandal P, Karthe P, Sadasivan C, Haridas M (2012) Anti-inflammatory property of n-hexadecanoic acid: structural evidence and kinetic assessment. Chem Biol Drug Des 80:434–439. https://doi.org/10.1111/j.1747-0285.2012.01418.x

    Article  CAS  PubMed  Google Scholar 

  21. Guerrero RV, Abarca-Vargas R, Petricevich VL (2017) Chemical compounds and biological activity of an extract from Bougainvillea × Buttiana (var. Rose) Holttum and Standl. Int J Pharm Pharm Sci 9:42–46. https://doi.org/10.22159/ijpps.2017v9i3.16190

    Article  CAS  Google Scholar 

  22. Rao MRK, Ravi A, Narayan S, Prabhu K (2016) Antioxidant study and GC MS analysis of an ayurvedic medicine ‘Talisa patradi Choornam. Inter J Pharmaceut Sci Rev Res 36:158–166

    CAS  Google Scholar 

  23. Teoh YP, Mat Don M (2014) Mycelia growth and production of total flavonoids and 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl- by Schizophyllum commune using a bubble column bioreactor considering aeration effect and mass transfer study. Chem Biochem Eng Q 28:553–559

    Article  CAS  Google Scholar 

  24. Foo LW, Salleh E, Mamat SNH (2015) Extraction and qualitative analysis of Piper betle leaves for antimicrobial activities. Int J Eng Technol Sci Res 2:1–8

    Google Scholar 

  25. Burdock GA (1997) Encyclopedia of food and color additives. CRC press, Boca Raton1, p 3153

    Google Scholar 

  26. Mouret A, Leclercq L, Mühlbauer A, Nardello-Rataj V (2014) Eco-friendly solvents and amphiphilic catalytic polyoxometalate nanoparticles: a winning combination for olefin epoxidation. Green Chem 16:269–278

    Article  CAS  Google Scholar 

  27. Litchfield C (1970) Taxonomic patterns in the fat content, fatty acid composition, and triglyceride composition of Palmae seeds. Chem Phys Lipids 4:96–103. https://doi.org/10.1016/0009-3084(70)90066-6

    Article  CAS  Google Scholar 

  28. Sekhar KNC, DeMason DA (1988) Quantitative ultrastructure and protein composition of date palm (Phoenix dactylifera) seeds: a comparative study of endosperm vs. embryo. Am J Bot 75:338–342. https://doi.org/10.1002/j.1537-2197.1988.tb13448.x

    Article  CAS  Google Scholar 

  29. Williams CA, Harborne JB, Clifford HT (1973) Negatively charged flavones and tricin as chemosystematic markers in the Palmae. Phytochemistry 12:2417–2430. https://doi.org/10.1016/0031-9422(73)80449-2

    Article  CAS  Google Scholar 

  30. Harborne JB (1975) Flavonoid sulphates: a new class of Sulphur compounds in higher plants. Phytochem 14:1147–1155

    Article  CAS  Google Scholar 

  31. El-Sayed NH, Ammar NM, Al-Okbi SY, El-Kassem ALT, Mabry TJ (2006) Antioxidant activity and two new flavonoids from Washingtonia filifera. Nat Prod Res 20:57–61. https://doi.org/10.1080/1478641500059276

    Article  CAS  PubMed  Google Scholar 

  32. Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against Zoosporic Fungi. Appl Environ Microbiol 64:1490–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Groult H, García-Álvarez I, Romero-Ramírez L, Nieto-Sampedro M, Herranz F, Fernández-Mayoralas A, Ruiz-Cabello J (2018) Micellar iron oxide nanoparticles coated with anti-tumor glycosides. Nanomaterials 8(567). 14 pages

    Article  PubMed Central  Google Scholar 

  34. Ciriminna R, Fidalgo A, Ilharco LM, Pagliaro M (2018) Dihydroxyacetone: an updated insight into an important bioproduct. Chem Open 7:233–236

    CAS  Google Scholar 

  35. Ponnamma SU, Manjunath K (2012) GC-MS analysis of phytocomponents in the methanolic extract of Justicia wynaadensis (NEES) T. Anders. Int J Pharma Bio Sci 3:570–576

    CAS  Google Scholar 

  36. Tyagi T, Agarwal M (2017) Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of Pistia stratiotes L. and Eichhornia crassipes (Mart.) Solms. J Pharmacog Phytochem 6:195–206

    CAS  Google Scholar 

  37. Krishnamoorthy K, Subramaniam P (2014) Phytochemical profiling of leaf, stem, and tuber parts of Solena amplexicaulis (Lam.) Gandhi using GC-MS. Int Sch Res Notices 567409. 13 pages. https://doi.org/10.1155/2014/567409

    Article  Google Scholar 

  38. Al-Marzoqi AH, Hameed H, Idan SA (2015) Analysis of bioactive chemical components of two medicinal plants (Coriandrum sativum and Melia azedarach) leaves using gas chromatography-mass spectrometry (GC-MS). Afr J Biotechnol 14:2812–2830

    Article  Google Scholar 

  39. Ojekale AB, Lawal OA, Segun AA, Samuel FO, Ismaila AI, Opoku AR (2013) Volatile constituents, antioxidant and insecticidal activities of essential oil from the leaves of Thaumatococcus daniellii (Benn.) Benth. from Nigeria. J Pharm 3:1–5

    Google Scholar 

  40. Dubal KN, Ghorpande PN, Kale MV (2013) Studies on bioactive compounds of Tectaria coadunata (Wall. Ex Hook & Grev.) C.Chr. Asian J Pharmaceut Clin Res 6:186–187

    Google Scholar 

  41. Hassan SR, Zaman NQ, Dahlan I (2017) Influence of seed loads on start-up of modified anaerobic hybrid baffled (MAHB) reactor treating recycled paper wastewater. Eng Heritage J 1:5–9

    Article  Google Scholar 

  42. Ghosh SK (2017) Waste water recycling and management. 7th Icon SWM-ISWMAW, vol 3. Springer, New York. https://doi.org/10.1007/978-981-13-2619-6

    Book  Google Scholar 

  43. Venkatesh R, Vidya R, Kalaivani K (2014) Gas chromatography and mass spectrometry analysis of Solanum villosum (Mill) (Solanaceae). Int J Pharm Sci Res 5:5283–5287

    CAS  Google Scholar 

  44. Barranco P, de la Pena JA, Martı’n MM, Cabello T (2000) Host rank for Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae) and host diameter. Bol San Veg Plagas 26:73–78

    Google Scholar 

  45. EPPO (European and Mediterranean Plant Protection Organization) (2008) Data sheets on quarantine pests. Rhynchophorus ferrugineus. EPPO Bull 38:55–59. https://doi.org/10.1111/j.1365-2338.2008.01195.x

    Article  Google Scholar 

  46. Cangelosi B, Clematis F, Monroy F, Roversi PF, Troiano R, Curir P, Lanzotti V (2015) Filiferol, a chalconoid analogue from Washingtonia filifera possibly involved in the defence against the red palm weevil Rhynchophorus ferrugineus Olivier. Phytochem 115:216–221. https://doi.org/10.1016/j.phytochem.2015.02.008

    Article  CAS  Google Scholar 

  47. Dembilio Ó, Jacas JA, Llácer E (2009) Are the palms Washingtonia filifera and Chamaerops humilis suitable hosts for the red palm weevil, Rhynchophorus ferrugineus (col. curculionidae)? J Appl Entomol 133:565–567. https://doi.org/10.1111/j.1439-0418.2009.01385.x

    Article  Google Scholar 

  48. Cangelosi B, Clematis F, Curir P, Monroy F (2016) Susceptibility and possible resistance mechanisms in the palm species Phoenix dactylifera, Chamaerops humilis and Washingtonia filifera against Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Bull Entomol Res 106:341–346. https://doi.org/10.1017/S000748531500108X

    Article  CAS  PubMed  Google Scholar 

  49. Elmann A, Telerman A, Erlank H, Mordechav M, Ofir R, Kashman Y (2013) Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. Oxidative Med Cell Longev 28:694398

    Google Scholar 

  50. Motta LF, Gaudio AC, Takahata Y (2006) Quantitative structure-activity relationships of a series of chalcone derivatives (1, 3-diphenyl-2-propen-1- one) as anti-plasmodium falciparum agents (anti-malaria agents). Internet Electron J Mol Des 5:555–569

    CAS  Google Scholar 

  51. Letafat B, Shakeri R, Emani S, Noushini S, Mohammadhossein N, Shirkavand N, Ardestani N, Safati M, Samadizadeh M, Letafat A, Shafice A, Foroumadi A (2013) Synthesis and in vitro cytotoxic activity of novel chalcone like agents. Iran J Basic Med Sci 16:1155–1162

    PubMed  PubMed Central  Google Scholar 

  52. Asami A, Hirai Y, Shoji J (1991) Studies on the constituents of palmae plants. VI. Steroid saponins and flavonoids of leaves of Phoenix canariensis hort. ex Chabaud, P. humilis Royle var. hanceana Becc., P. dactylifera L., and Licuala spinosa Wurmb. Chem Pharm Bull 39:2053–2056. https://doi.org/10.1248/cpb.39.2053

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Hassan Dewir .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dewir, Y.H., El-Mahrouk, M.E., Seliem, M.K., Murthy, H.N. (2019). Bioactive Compounds of California Fan Palm Washingtonia filifera (Linden ex André) H. Wendl. ex de Bary. In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_7-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_7-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics