Skip to main content

Food Processing Waste: A Potential Source for Bioactive Compounds

  • Living reference work entry
  • First Online:
Book cover Bioactive Compounds in Underutilized Fruits and Nuts

Abstract

In the past, unfortunately, fruit processing wastes and by-products have not been taken seriously. However, in recent era, fruit processing industries have undergone rapid growth globally owing to the awareness of public and scientists. Fruit processing wastes are considered as valuable resource owing to the presence of a broad spectrum of bioactive moieties including polyphenols, antioxidants, proteins, dietary fiber, enzymes, flavoring aromas, organic acids, and minerals. Scientists are trying to recover various bioactive compounds from these wastes through specific extraction techniques, i.e., conventional and novel techniques. Applications of food processing wastes in food, textile, cosmetic, and pharmaceutical industries can be increased through the extraction of bioactive moieties by various methods. This chapter highlights the bioactive profiling of fruit waste material of different processed foods and guides how we can extract these bioactive compounds. Bioactive extraction techniques include conventional extraction and novel technologies are discussed. Utilization of fruit processing wastes in the production of high value-added products has increased the profitability of the fruit processing industry by reducing the cost of disposal of these wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

BG:

Beta-glucans

CA:

Citric acid

DF:

Dietary fiber

DNA:

Deoxyribonucleic acid

EAE:

Enzyme-assisted extractions

EPA:

United States Environmental Protection Agency

FAO:

Food and Agriculture Organization

HHP:

High hydrostatic pressure

IDF:

Insoluble dietary fiber

LA:

Lactic acid

LLE:

Liquid-liquid extraction

MAE:

Microwave-assisted extraction

NSPs:

Non-starch polysaccharides

OAs:

Organic acids

PEF:

Pulsed electric field

RNA:

Ribonucleic acid

SDF:

Soluble dietary fiber

SE:

Soxhlet extraction

SLE:

Solid-liquid extraction

SSF:

Solid-state fermentation

TDF:

Total dietary fiber

UAE:

Ultrasound-assisted extraction

UK:

United Kingdom

USA:

United States of America

References

  1. Djilas S, Canadanović-Brunet J, Ćetković G (2009) By-products of fruits processing as a source of phytochemicals. Chem Ind Chem Eng Q 15(4):191–202

    Article  CAS  Google Scholar 

  2. Yahia EM (2010) The contribution of fruit and vegetable consumption to human health. In: Phytochemicals: chemistry, nutritional and stability. Wiley-Blackwell, pp 3–51

    Google Scholar 

  3. Panouille M, Ralet MC, Bonnin E, Thibault JF (2007) Recovery and reuse of trimmings and pulps from fruit and vegetable processing. In: Waldron K (ed) Handbook of waste management and co-product recovery in food processing, vol 1. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  4. Ajila CM, Naidu A, Bhat SG, Rao UP (2007) Bioactive compounds and antioxidant potential of mango peel extract. Food Chem 105(3):982–988

    Article  CAS  Google Scholar 

  5. Schieber A, Stintzing FC, Carle R (2001) Byproducts of plant food processing as a source of functional compounds – recent developments. Trends Food Sci Technol 12:401–413

    Article  CAS  Google Scholar 

  6. Pazmino-Duran EA, Giusti MM, Wrolstad RE, Gloria MBA (2001) Anthocyanins from Oxalis triangularis as potential food colorants. Food Chem 75(2):211–216

    Article  CAS  Google Scholar 

  7. Gupta K, Joshi VK (2000) Fermentative utilization of waste from food processing industry. In: Joshi VK (ed) Postharvest technology of fruits and vegetables: handling, processing, fermentation and waste management. New Delhi, Indus Pub Co, pp 1171–1193

    Google Scholar 

  8. Pagan J, Ibarz A, Liorca M, Barbosa-Canovas GV (2001) Extraction and characterization of pectin from stored peach pomace. Food Res Int 34(7):605–612

    Article  CAS  Google Scholar 

  9. Siriphanich J, Yahia EM (2011) Durian (Durio zibethinus Merr.). In: Yahia EM (ed) Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, Cambridge, GB, pp 80–114

    Chapter  Google Scholar 

  10. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S, McDermott U, Azizian N, Zou L, Fischbach MA, Wong KK, Brandstetter K, Wittner B, Ramaswamy S, Classon M, Settleman J (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141(1):69–80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen JP, Chen GG, Wang XP, Qin L, Bai Y (2018) Dietary fiber and metabolic syndrome: a meta-analysis and review of related mechanisms. Nutrients 10(1):24

    Article  CAS  Google Scholar 

  12. Ketsa S, Paull RE, Saltveit ME (2011) Mangosteen (Garcinia mangostana L.). In: Yahia E (ed) Postharvest biology and technology of tropical and subtropical fruits. Woodhead Publishing, London, pp 1–30

    Google Scholar 

  13. Arjona HE, Matta FB, Garner JO (1991) Growth and composition of passion fruit (Passiflora edulis) and maypop (P. incarnata). Hortic Sci 26:921–323

    Google Scholar 

  14. Almeida JM, Lima VA, Giloni-Lima PC, Knob A (2015) Passion fruit peel as novel substrate for enhanced β-glucosidases production by Penicillium verruculosum: potential of the crude extract for biomass hydrolysis. Biomass Bioenergy 72:216–226

    Article  CAS  Google Scholar 

  15. Esquivel P, Stintzing FC, Carle R (2007) Comparison of morphological and chemical fruit traits from different pitaya genotypes (Hylocereus sp.) grown in Costa Rica. J Appl Bot Food Qual 81:7–14

    CAS  Google Scholar 

  16. Ketnawa S, Chaiwut P, Rawdkuen S (2011) Aqueous two-phase extraction of bromelain from pineapple peels (‘Phu Lae’cv.) and its biochemical properties. Food Sci Biotechnol 20:1219–1226

    Article  CAS  Google Scholar 

  17. Choonut A, Saejong M, Sangkharak K (2014) The production of ethanol and hydrogen from pineapple peel by Saccharomyces cerevisiae and Enterobacter aerogenes. Energy Procedia 52:242–249

    Article  CAS  Google Scholar 

  18. Galanakis CM (2012) Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci Technol 26(2):68–87

    Article  CAS  Google Scholar 

  19. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fazaeli M, Yousefi S, Emam-Djomeh Z (2013) Investigation on the effects of microwave and conventional heating methods on the phytochemicals of pomegranate (Punica granatum L.) and black mulberry juices. Food Res Int 50(2):568–573

    Article  CAS  Google Scholar 

  21. Al-Maiman SA, Ahmad D (2002) Changes in physical and chemical properties during pomegranate (Punica granatum L) fruit maturation. J Agric Food Chem 76:437–447

    Article  CAS  Google Scholar 

  22. Subagio A, Morita N, Sawada S (1996) Carotenoids and their fatty-acid esters in banana peel. J Nutr Sci Vitaminol (Tokyo) 42(6):553–566

    Article  CAS  Google Scholar 

  23. Martin-Cabrejas MA, Esteban RM, Lopez-Andreu FJ, Waldron K et al (1995) Dietary fiber content of pear and kiwi pomaces. Agri 43(3):662–666

    CAS  Google Scholar 

  24. Wang J, Zhao YM, Tian YT, Yan CL, Guo CY (2013) Ultrasound-assisted extraction of total phenolic compounds from Inula helenium. Sci World J 2013:1–5

    Google Scholar 

  25. Lu Y, Foo LY (1998) Constitution of some chemical components of apple seed. Food Chem 61:29–33

    Article  CAS  Google Scholar 

  26. Foo LY, Lu Y (1999) Isolation and identification of procyanidins in apple pomace. Food Chem 64:511–518

    Article  CAS  Google Scholar 

  27. Lommen A, Godejohann M, Venema DP, Hollman PCH, Spraul M (2000) Application of directly coupled HPLC-NMR-MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 72:1793–1797

    Article  CAS  PubMed  Google Scholar 

  28. Teleszko M, Wojdyło A (2015) Comparison of phenolic compounds and antioxidant potential between selected edible fruits and their leaves. J Funct Foods 14:736–746

    Article  CAS  Google Scholar 

  29. Wolfe KL, Liu RH (2003) Apple peels as a value-added food ingredient. J Agric Food Chem 51:1676–1683

    Article  CAS  PubMed  Google Scholar 

  30. Sharma R, Oberoi HS, Dhillon GS (2016) Fruit and vegetable processing waste: renewable feed stocks for enzyme production. In: Dhillon GS, Kaur S (eds) Agro-industrial wastes as feedstock for enzyme production: apply and exploit the emerging and valuable use options of waste biomass. Academic Press Elsevier, London, UK, pp 23–59

    Chapter  Google Scholar 

  31. Subagio A, Morita N, Sawada S (1996) Carotenoids and their fatty-acid esters in banana peel. J Nutr Sci Vitaminol 42:553–566

    Article  CAS  PubMed  Google Scholar 

  32. Martin SH, Kozukue N, Kim HJ, Friedman M (2016) Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, phenolic, and flavonoid content and antioxidative properties of potato tubers, peels, and cortexes (pulps). J Food Compos Anal 50:77–87

    Article  CAS  Google Scholar 

  33. da Silva Caetano AC, de Araújo CR, de Lima VLAG, Maciel MIS, Melo EA (2011) Evaluation of antioxidant activity of agro-industrial waste of acerola (Malpighia emarginata D.C.) fruit extracts. Food Sci Tech (Campinas) 31:769–775

    Article  Google Scholar 

  34. Benzarti S, Hamdi H, Lahmayer I, Toumi W, Kerkeni A, Belkadhi K, Sebei H (2015) Total phenolic compounds and antioxidant potential of quince (Cydonia oblonga Miller) leaf methanol extract. Int J Innov Appl Stud 13:518–526

    CAS  Google Scholar 

  35. Sood A, Gupta M (2015) Extraction process optimization for bioactive compounds in pomegranate peel. Food Biosci 12:100–106

    Article  CAS  Google Scholar 

  36. Goula AM, Ververi M, Adamopoulou A, Kaderides K (2017) Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrason Sonochem 34:821–830

    Article  CAS  PubMed  Google Scholar 

  37. Moo-Huchin VM, Moo-Huchin MI, Estrada-León RJ, Cuevas-Glory L, Estrada-Mota IA, Ortiz-Vázquez E, Betancur-Ancona D, Sauri-Duch E (2015) Antioxidant compounds, antioxidant activity and phenolic content in peel from three tropical fruits from Yucatan, Mexico. Food Chem 166:17–22

    Article  CAS  PubMed  Google Scholar 

  38. Visioli F, Bellomo G, Galli C (1998) Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 247:60–64

    Article  CAS  PubMed  Google Scholar 

  39. Rodríguez Amado I, Franco D, Sánchez M, Zapata C, Vázquez JA (2014) Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chem 165:290–299

    Article  CAS  Google Scholar 

  40. Dailey A, Vuong QV (2015) Effect of extraction solvents on recovery of bioactive compounds and antioxidant properties from macadamia (Macadamia tetraphylla) skin waste. Cogent Food Agri 1:1115646

    Google Scholar 

  41. Nazzaro M, Mottola MV, La Cara F, Del Monaco G, Aquino RP, Volpe MG (2012) Extraction and characterization of biomolecules from agricultural wastes. Chem Eng Trans 27:331–336

    Google Scholar 

  42. Manna L, Bugnone CA, Banchero M (2015) Valorization of hazelnut, coffee and grape wastes through supercritical fluid extraction of triglycerides and polyphenols. J Supercrit Fluids 104:204–211

    Article  CAS  Google Scholar 

  43. Lorencio FG, Alvarez EH (2016) Functional foods and health effects: a nutritional biochemistry perspective. Curr Med Chem 23(26):2929–2957

    Article  CAS  Google Scholar 

  44. Singh H (2016) Nanotechnology applications in functional foods; opportunities and challenges. Prev Nutr Food Sci 21(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Park Y, Subar AF, Hollenbeck A, Schatzkin A (2011) Dietary fiber intake and mortality in the NIH-AARP diet and health study. Arch Intern Med 171(12):1061–1068

    Article  PubMed  PubMed Central  Google Scholar 

  46. DeVries JW (2001) The definition of dietary fibre. Cereal Foods World 46:112–129

    CAS  Google Scholar 

  47. Borderias AJ, Alonso IS, Mateos MP (2005) New applications of fibres in foods: addition to fishery products. Trends Food Sci Technol 16(10):458–465

    Article  CAS  Google Scholar 

  48. Esposito F, Arlotti G, Bonifati AM, Napolitano A, Vitale D, Vincenzo F (2005) Antioxidant activity and dietary fiber in durum wheat bran by- products. Food Res Int 38:1167–1173

    Article  CAS  Google Scholar 

  49. Fuller S, Beck E, Salman H, Tapsell L (2016) New horizons for the study of dietary fiber and health: a review. Plant Foods Hum Nutr 71(1):1–12

    Article  CAS  PubMed  Google Scholar 

  50. Jha R, Berrocoso JD (2015) Review: dietary fiber utilization and its effects on physiological functions and gut health of swine. Animal 9(9):1441–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tucker LA, Thomas KS (2009) Increasing total fiber intake reduces risk of weight and fat gains in women. J Nutr 139:576–581

    Article  CAS  PubMed  Google Scholar 

  52. Veronese N, Solmi M, Caruso MG, Giannelli G, Osella AR, Evangelou E, Maggi S, Fontana L, Stubbs B, Tzoulaki I (2018) Dietary fiber and health outcomes: an umbrella review of systematic reviews and meat-analyses. Am J Clin Nutr 107(3):436–444

    Article  PubMed  Google Scholar 

  53. Evans CEL, Greenwood DC, Threapleton DE, Cleghorn CL, Nykjaer C, Woodhead CE, Gale CP, Burley VJ (2015) Effects of dietary fibre type on blood pressure: a systematic review and meta-analysis of randomized controlled trials of healthy individuals. J Hypertens 33:897–911

    Article  CAS  PubMed  Google Scholar 

  54. Hartvigsen ML, Gregersen S, Laerke HN, Holst JJ, Knudsen KEB, Hermansen K (2013) Effects of concentrated arabinoxylan and β-glucan compared with refined wheat and whole grain rye on glucose and appetite in subjects with the metabolic syndrome: a randomized study. Eur J Clin Nutr 68(1):84–90

    Article  PubMed  CAS  Google Scholar 

  55. Jaime L, Molla E, Fernandez A, Martín-Cabrejas MA, Lopez-Andreu FJ, Esteban RM (2002) Structural carbohydrate differences and potential source of dietary fiber of onion (Allium cepa L.) tissues. J Agric Food Chem 50(1):122–128

    Article  CAS  PubMed  Google Scholar 

  56. Gorinstein S, Zachwieja Z, Folta M, Barton H, Piotrowicz J, Zemser M, Màrtín-Belloso O (2001) Comparative contents of dietary fiber, total phenolics, and minerals in persimmons and apples. J Agric Food Chem 49:952–957

    Article  CAS  PubMed  Google Scholar 

  57. Russo M, Bonaccorsi I, Torre G, Sarò M, Dugo P, Mondello L (2014) Underestimated sources of flavonoids, limonoids and dietary fibre: availability in lemon’s by-products. J Funct Foods 9:18–26

    Article  CAS  Google Scholar 

  58. Chau CF, Huang YL (2003) Comparison of the chemical composition and physicochemical properties of different fibers prepared from the peel of Citrus sinensis L. cv. Liucheng. J Agric Food Chem 51:2615–2618

    Article  CAS  PubMed  Google Scholar 

  59. Kammerer D, Claus A, Schieber A, Carle R (2005) A novel process for the recovery of polyphenols from grape (Vitis vinifera L.) pomace. J Food Sci 70:C157–C163

    Article  CAS  Google Scholar 

  60. Ashoush IS, Gadallah MGE (2011) Utilization of mango peels and seed kernels powders as sources of phytochemicals in biscuit. World J Dairy Food Sci 6:35–42

    Google Scholar 

  61. Ajila CM, Bhat SG, Rao UP (2007) Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem 102:1006–1011

    Article  CAS  Google Scholar 

  62. Ajila CM, Leelavathi K, Rao UP (2008) Improvement of dietary fiber content and antioxidant properties in soft dough biscuits with the incorporation of mango peel powder. J Cereal Sci 48:319–326

    Article  CAS  Google Scholar 

  63. Bocco A, Cuvelier ME, Richard H, Berset C (1998) Antioxidant activity and phenolic composition of citrus peel and seed extracts. J Agric Food Chem 46:2123–2129

    Article  CAS  Google Scholar 

  64. Soong YY, Barlow PJ (2004) Antioxidant activity and phenolic content of selected fruit seeds. Food Chem 88:411–417

    Article  CAS  Google Scholar 

  65. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  66. Balasundram N, Sundram K, Samman S (2006) Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chem 99:191–203

    Article  CAS  Google Scholar 

  67. Popa VI, Dumitru M, Volf I, Anghel N (2008) Lignin and polyphenols as allelochemicals. Ind Crop Prod 27:144–149

    Article  CAS  Google Scholar 

  68. Ignat I, Volf I, Popa VI (2011) A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem 126:1821–1835

    Article  CAS  PubMed  Google Scholar 

  69. Lapornik B, Prošek M, Wondra AG (2005) Comparison of extracts prepared from plant by-products using different solvents and extraction time. J Food Eng 71:214–222

    Article  Google Scholar 

  70. Tomás-Barberán FA, Ferreres F, Gil MI (2000) Antioxidant phenolic metabolites from fruit and vegetables and changes during postharvest storage and processing. In: Rahman A-U (ed) Studies in natural products chemistry, vol 23. Elsevier Science, Amsterdam, The Netherlands, pp 739–795

    Google Scholar 

  71. Robbins RJ (2003) Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 51:2866–2887

    Article  CAS  PubMed  Google Scholar 

  72. Hollman PH, Katan MB (1999) Dietary flavonoids: intake, health effects and bioavailability. Food Chem Toxicol 37:937–942

    Article  CAS  PubMed  Google Scholar 

  73. Li BB, Smith B, Hossain MM (2006) Extraction of phenolics from citrus peels: II Enzyme-assisted extraction method. Sep Purif Technol 48:189–196

    Article  CAS  Google Scholar 

  74. Tzulker R, Glazer I, Bar-Ilan I, Holland D, Aviram M, Amir R (2007) Antioxidant activity, polyphenol content, and related compounds in different fruit juices and homogenates prepared from 29 different pomegranate accessions. J Agric Food Chem 55(23):9559–9570

    Article  CAS  PubMed  Google Scholar 

  75. Friedman M (1997) Chemistry, biochemistry, and dietary role of potato polyphenols: a review. J Agric Food Chem 45:1523–1540

    Article  Google Scholar 

  76. Zeyada NN, Zeitoum MAM, Barbary OM (2008) Utilization of some vegetables and fruit waste as natural antioxidants. Alex J Food Sci Technol 5:1–11

    Google Scholar 

  77. Al-Farsi MA, Lee CY (2008) Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem 108:977–985

    Article  CAS  PubMed  Google Scholar 

  78. Agarwal M, Kumar A, Gupta R, Upadhyaya S (2012) Extraction of polyphenol, flavonoid from Emblica officinalis, Citrus limon, Cucumis sativus and evaluation of their antioxidant activity. Orient J Chem 28:993

    Article  CAS  Google Scholar 

  79. Someya S, Yoshiki Y, Okubo K (2002) Antioxidant compounds from bananas (Musa cavendish). Food Chem 79:351–354

    Article  CAS  Google Scholar 

  80. Li Y, Guo C, Yang J, Wei J, Xu J, Cheng S (2006) Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem 96:254–260

    Article  CAS  Google Scholar 

  81. Torres JL, Bobet R (2001) New flavanol derivatives from grape (Vitis vinifera) by-products. Antioxidant aminoethylthio-flavan-3-ol conjugates from a polymeric waste fraction used as a source of flavanols. J Agric Food Chem 49:4627–4634

    Article  CAS  PubMed  Google Scholar 

  82. Shrikhande AJ (2000) Wine by-products with health benefits. Food Res Int 33:469–474

    Article  CAS  Google Scholar 

  83. Chang S, Tan C, Frankel EN, Barrett DM (2000) Low-density lipoprotein antioxidant activity of phenolic compounds and polyphenol oxidase activity in selected clingstone peach cultivars. J Agric Food Chem 48:47–51

    Article  CAS  Google Scholar 

  84. Djekrif-Dakhmouche S, Gheribi-Aoulmi Z, Meraihi Z, Bennamoun L (2006) Application of a statistical design to the optimization of culture medium for α-amylase production by Aspergillus niger ATCC 16404 grown on orange waste powder. J Food Eng 73:190–197

    Article  CAS  Google Scholar 

  85. Unakal C, Kallur RI, Kaliwal BB (2012) Production of α-amylase using banana waste by Bacillus subtilis under solid state fermentation. Eur. J Exp Biol 2:1044–1052

    CAS  Google Scholar 

  86. Said A, Leila A, Kaouther D, Sadia B (2014) Date wastes as substrate for the production of α-amylase and invertase. Iran J Biotechnol 12:41–49

    Article  Google Scholar 

  87. Selvama K, Selvankumarb T, Rajiniganthb R, Srinivasanb P, Sudhakarb C, Senthilkumara B, Govarthanan M (2016) Enhanced production of amylase from Bacillus sp. using groundnut shell and cassava waste as a substrate under process optimization: waste to wealth approach. Biocatal Agric Biotechnol 7:250–256

    Article  Google Scholar 

  88. Mohamed SA, Drees EA, El-Badry MO, Fahmy AS (2010) Biochemical properties of α-amylase from peel of Citrus sinensis cv. abosora. Appl Biochem Biotechnol 160:2054–2065

    Article  CAS  PubMed  Google Scholar 

  89. Mahmoud K (2015) Statistical optimization of cultural conditions of a halophilic alpha-amylase production by halophilic Streptomyces sp. grown on orange waste powder. Biocatal Agric Biotechnol 4:685–693

    Article  Google Scholar 

  90. Mushtaq Q, Irfan M, Tabssum F, Qazi JI (2017) Potato peels: a potential food waste for amylase production. J Food Process Eng 40:e12512

    Article  CAS  Google Scholar 

  91. Krishna C (2005) Solid-state fermentation systems—an overview. Crit Rev Biotechnol 25:1–30

    Article  CAS  PubMed  Google Scholar 

  92. Erdal S, Taskin M (2010) Production of alpha-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste loquat (Eriobotrya japonica Lindley) kernels as substrate. Rom Biotechnol Lett 15:5342–5350

    CAS  Google Scholar 

  93. Kumar D, Yadav KK, Muthukumar M, Garg N (2013) Production and characterization of [α]-amylase from mango kernel by Fusarium solani NAIMCC-F-02956 using submerged fermentation. J Environ Biol 34:1053–10538

    CAS  PubMed  Google Scholar 

  94. Sabu A, Pandey A, Daud MJ, Szakacs G (2005) Tamarind seed powder and palm kernel cake: two novel agro residues for the production of tannase under solid state fermentation by Aspergillus niger ATCC 16620. Bioresour Technol 96:1223–1228

    Article  CAS  PubMed  Google Scholar 

  95. Birhanli E, Erdogan S, Yesilada O, Onal Y (2013) Laccase production by newly isolated white rot fungus Funalia trogii: effect of immobilization matrix on laccase production. Biochem Eng J 71:134–139

    Article  CAS  Google Scholar 

  96. Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13:345–351

    Article  CAS  PubMed  Google Scholar 

  97. Bharathiraja S, Suriya J, Krishnan M, Manivasagan P, Kim SK (2017) Production of enzymes from agricultural wastes and their potential industrial applications. Adv Food Nutr Res 80:125–148

    Article  CAS  PubMed  Google Scholar 

  98. Sandhya C, Sumantha A, Szakacs G, Pandey A (2005) Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem 40:2689–2694

    Article  CAS  Google Scholar 

  99. Mrudula S, Anitharaj R (2011) Pectinase production in solid state fermentation by Aspergillus niger using orange peel as substrate. Glob J Biotechnol Biochem 6:64–71

    CAS  Google Scholar 

  100. Ray RC, Mohapatra S, Panda S, Kar S (2008) Solid substrate fermentation of cassava fibrous residue for production of alpha-amylase, lactic acid and ethanol. J Environ Biol 29:111–115

    CAS  PubMed  Google Scholar 

  101. Jawad AH, Alkarkhi AF, Jason OC, Easa AM, Norulaini NN (2013) Production of the lactic acid from mango peel waste—factorial experiment. J King Saud Univ Sci 25:39–45

    Article  Google Scholar 

  102. Panda SK, Ray RC (2015) Microbial processing for valorization of horticultural wastes. In: Shukla LB, Pradhan N, Panda S, Mishra BK (eds) Environmental microbial biotechnology. Springer Intl Publishing, New Delhi, pp 203–221

    Chapter  Google Scholar 

  103. Swain MR, Ray RC, Patra JK (2011) Citric acid: microbial production and applications in food and pharmaceutical industries. In: Vargas DA, Medina JV (eds) Citric acid: synthesis, properties, and applications. Nova Science Publishers, Hauppauge, pp 1–22

    Google Scholar 

  104. Kumar D, Jain VK, Shanker G, Srivastava A (2003) Utilisation of fruits waste for citric acid production by solid state fermentation. Process Biochem 38:1725–1729

    Article  CAS  Google Scholar 

  105. Prabha MS, Rangaiah GS (2014) Citric acid production using Ananas comosus and its waste with the effect of alcohols. Intl J Curr Microbiol Appl 3:747–754

    Google Scholar 

  106. Rodríguez Couto S (2008) Exploitation of biological wastes for the production of value-added products under solid-state fermentation conditions. Biotechnol J 3:859–870

    Article  PubMed  CAS  Google Scholar 

  107. Mudaliyar P, Sharma L, Kulkarni C (2012) Food waste management—lactic acid production by Lactobacillus species. Intl J Adv Res Biol Sci 2:34–38

    Google Scholar 

  108. John RP, Nampoothiri KM, Pandey A (2006) Solid-state fermentation for L-lactic acid production from agro wastes using Lactobacillus delbrueckii. Process Biochem 41:759–763

    Article  CAS  Google Scholar 

  109. Fasoli E, Righetti PG (2015) Proteomics of fruits and beverages. Curr Opin Food Sci 4:76–85

    Article  Google Scholar 

  110. Lerma-García MJ, D’Amato A, Simó-Alfonso EF, Righetti PG, Fasoli E (2016) Orange proteomic fingerprinting: from fruit to commercial juices. Food Chem 196:739–749

    Article  PubMed  CAS  Google Scholar 

  111. Chitturi S, Talatam VG, Vuppu S (2013) Studies on protein content, protease activity, antioxidants potential, melanin composition, glucosinolate and pectin constitution with brief statistical analysis in some medicinally significant fruit peels. Der Pharm Lett 5:13–23

    CAS  Google Scholar 

  112. Khoddami A, Wilkes MA, Roberts TH (2013) Techniques for analysis of plant phenolic compounds. Molecules 18:2328–2375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Smith RM (2003) Before the injection—modern methods of sample preparation for separation techniques. J Chromatogr A 1000:3–27

    Article  CAS  PubMed  Google Scholar 

  114. Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8:1–10

    CAS  PubMed  Google Scholar 

  115. Baiano A (2014) Recovery of biomolecules from food wastes—a review. Molecules 19:14821–14842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Hernández Y, Lobo MG, González M (2009) Factors affecting sample extraction in the liquid chromatographic determination of organic acids in papaya and pineapple. Food Chem 114:734–741

    Article  CAS  Google Scholar 

  117. Khalifa I, Barakat H, El-Mansy HA, Soliman SA (2016) Optimizing bioactive substances extraction procedures from guava, olive and potato processing wastes and evaluating their antioxidant capacity. J Food Chem Nanotech 2(4):170–177

    Google Scholar 

  118. Lafka TI, Sinanoglou V, Lazos ES (2007) On the extraction and antioxidant activity of phenolic compounds from winery wastes. Food Chem 104(3):1206–1214

    Article  CAS  Google Scholar 

  119. Rana S, Gupta S, Rana A, Bhushan S (2015) Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Sci Human Wellness 4(4):180–187

    Article  Google Scholar 

  120. Benítez V, Mollá E, Martín-Cabrejas MA, Aguilera Y, López-Andréu FJ, Cools K, Terry LA, Esteban RM (2011) Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds. Plant Foods Hum Nutr 66:48–57

    Article  PubMed  CAS  Google Scholar 

  121. Heng MY, Katayama S, Mitani T, Ong ES, Nakamura S (2017) Solventless extraction methods for immature fruits: evaluation of their antioxidant and cytoprotective activities. Food Chem 221:1388–1393

    Article  CAS  PubMed  Google Scholar 

  122. Luengo E, Condón-Abanto S, Condón S, Álvarez I, Raso J (2014) Improving the extraction of carotenoids from tomato waste by application of ultrasound under pressure. Sep Purif Technol 36:130–136

    Article  CAS  Google Scholar 

  123. Manousaky A, Jancheva M, Grigorakis S, Makris DP (2016) Extraction of antioxidant phenolics from agri-food waste biomass using a newly designed glycerol-based natural low-transition temperature mixture: a comparison with conventional eco-friendly solvents. Recycling 1:194–204

    Article  Google Scholar 

  124. Rabelo RS, Machado MTC, Martínez J, Hubinger MD (2016) Ultrasound assisted extraction and nanofiltration of phenolic compounds from artichoke solid wastes. J Food Eng 178:170–180

    Article  CAS  Google Scholar 

  125. Strati IF, Gogou E, Oreopoulou V (2015) Enzyme and high pressure assisted extraction of carotenoids from tomato waste. Food Bioprod Process 94:668–674

    Article  CAS  Google Scholar 

  126. De Castro ML, Garcıa-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10

    Article  Google Scholar 

  127. Paré JJ, Bélanger JM, Stafford SS (1994) Microwave-assisted process (MAP™): a new tool for the analytical laboratory. Trends Anal Chem 13:176–184

    Article  Google Scholar 

  128. Letellier M, Budzinski H (1999) Microwave assisted extraction of organic compounds. Analysis 27:259–270

    CAS  Google Scholar 

  129. Jain T, Jain V, Pandey R, Vyas A, Shukla SS (2009) Microwave assisted extraction for phytoconstituents—an overview. Asian J Res Chem 2:19–25

    CAS  Google Scholar 

  130. Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, Vorobiev E, Milisic V, Peuchot MM (2012) Enhanced extraction of valuable compounds from merlot grapes by pulsed electric field. Am J Enol Vitic 63:205–211

    Article  CAS  Google Scholar 

  131. Puértolas E, López N, Saldaña G, Álvarez I, Raso J (2010) Evaluation of phenolic extraction during fermentation of red grapes treated by a continuous pulsed electric fields process at pilot-plant scale. J Food Eng 98:120–125

    Article  CAS  Google Scholar 

  132. Guderjan M, Töpfl S, Angersbach A, Knorr D (2005) Impact of pulsed electric field treatment on the recovery and quality of plant oils. J Food Eng 67:281–287

    Article  Google Scholar 

  133. Ade-Omowaye BIO, Angersbach A, Taiwo KA, Knorr D (2002) Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends Food Sci Technol 12:285–295

    Article  CAS  Google Scholar 

  134. Lebovka NI, Bazhal MI, Vorobiev E (2002) Estimation of characteristic damage time of food materials in pulsed-electric fields. J Food Eng 54:337–346

    Article  Google Scholar 

  135. Fincan M, Dejmek P (2002) In situ visualization of the effect of a pulsed electric field on plant tissue. J Food Eng 55:223–230

    Article  Google Scholar 

  136. Heinz V, Toepfl S, Knorr D (2003) Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment. Innov Food Sci Emerg Technol 4:167–175

    Article  Google Scholar 

  137. Vorobiev E, Jemai AB, Bouzrara H, Lebovka NI, Bazhal MI (2005) Pulsed electric field assisted extraction of juice from food plants. In: Barbosa-Canovas GV, Tapia MS, Cano MP (eds) Novel food processing technologies. CRC Press, New York, N.Y, pp 105–130

    Google Scholar 

  138. Vorobiev E, Lebovka NI (2006) Extraction of intercellular components by pulsed electric fields. In: Raso J, Heinz V (eds) Pulsed electric fields technology for the food industry. Springer, New York, pp 153–193

    Chapter  Google Scholar 

  139. Angersbach A, Heinz V, Knorr D (2000) Effects of pulsed electric fields on cell membranes in real food systems. Innov Food Sci Emerg Technol 1:135–149

    Article  CAS  Google Scholar 

  140. Barsotti L, Merle P, Cheftel JC (1998) Traitement des aliments par champs électriques pulsés. 1-Aspects physiques. Sci Des Alim 18:583–601

    Google Scholar 

  141. Rosenthal A, Pyle DL, Niranjan K (1996) Aqueous and enzymatic processes for edible oil extraction. Enzym Microb Technol 19:402–420

    Article  CAS  Google Scholar 

  142. Sharma A, Khare SK, Gupta MN (2002) Enzyme-assisted aqueous extraction of peanut oil. J Am Oil Chem Soc 79:215–218

    Article  CAS  Google Scholar 

  143. Niranjan K, Hanmoungjai P (2004) Enzyme-aided aqueous extraction. In: Dunford NT, Dunford HB (eds) Nutritionally enhanced edible oil processing. AOCS Press. ebook, Champaign. ISBN: 978-1-4398-2227-2

    Google Scholar 

  144. Dominguez H, Nunez MJ, Lema JM (1995) Enzyme-assisted hexane extraction of soya bean oil. Food Chem 54:223–231

    Article  CAS  Google Scholar 

  145. Meyer AS, Jepsen SM, Sørensen NS (1998) Enzymatic release of antioxidants for human low-density lipoprotein from grape pomace. J Agric Food Chem 46:2439–2446

    Article  CAS  Google Scholar 

  146. Landbo AK, Meyer AS (2001) Enzyme-assisted extraction of antioxidative phenols from black currant juice press residues (Ribes nigrum). J Agric Food Chem 49:3169–3177

    Article  CAS  PubMed  Google Scholar 

  147. Gómez-García R, Martínez-Ávila GC, Aguilar CN (2012) Enzyme-assisted extraction of antioxidative phenolics from grape (Vitis vinifera L.) residues. 3 Biotech 2:297–300

    Article  PubMed Central  Google Scholar 

  148. Müller E, Berger R, Blass E, Sluyts D, Pfennig A (2008) Liquid–liquid extraction equipment. Ullman’s encyclopedia of industrial chemistry (online version). Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim

    Google Scholar 

  149. Corrales M, Fernandez Garcia A, Butz P, Tauscher B (2009) Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J Food Eng 90:415–421

    Article  CAS  Google Scholar 

  150. Rubilar M, Pinelo M, Franco D, Sineiro J, Nunez MJ (2003) Residuos agroindustriales como fuente de antioxidants. Afinidad 60:153–160

    CAS  Google Scholar 

  151. Hayouni EA, Abedrabba M, Bouix M, Hamdi M (2007) The effects of solvents and extraction method on the phenolic contents and biological activities in vitro of Tunisian Quercus coccifera L. and Juniperus phoenicea L. fruit extracts. Food Chem 105:1126–1134

    Article  CAS  Google Scholar 

  152. Dorta E, Lobo MG, Gonzalez M (2012) Reutilization of mango byproducts: study of the effect of extraction solvent and temperature on their antioxidant properties. J Food Sci 77:C80–C88

    Article  CAS  PubMed  Google Scholar 

  153. González-Montelongo R, Lobo MG, González M (2010) Antioxidant activity in banana peel extracts: testing extraction conditions and related bioactive compounds. Food Chem 119:1030–1039

    Article  CAS  Google Scholar 

  154. Luthria DL (2008) Influence of experimental conditions on the extraction of phenolic compounds from parsley (Petroselinum crispum) flakes using a pressurized liquid extractor. Food Chem 107:745–752

    Article  CAS  Google Scholar 

  155. Luque-García JL, Luque de Castro MD (2004) Ultrasound-assisted Soxhlet extraction: an expeditive approach for solid sample treatment. Application to the extraction of total fat from oleaginous seeds. J Chromatogr A 1034(1–2):237–242

    Article  PubMed  CAS  Google Scholar 

  156. Wang J, Sun B, Cao Y, Tian Y, Li X (2008) Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 106:804–810

    Article  CAS  Google Scholar 

  157. Romdhane M, Gourdon C (2002) Investigation in solid-liquid extraction: influence of ultrasound. Chem Eng J 87(1):11–19

    Article  CAS  Google Scholar 

  158. Patist A, Bates D (2008) Ultrasonic innovations in the food industry: from the laboratory to commercial production. Innov Food Sci Emerg Technol 9:147–154

    Article  CAS  Google Scholar 

  159. Wang L, Weller CL (2006) Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol 17(6):300–312

    Article  CAS  Google Scholar 

  160. Safdar MN, Kausar T, Jabbar S, Mumtaz A, Ahad K, Saddozai AA (2017) Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J Food Drug Anal 25(3):488–500

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hafiz Ansar Rasul Suleria .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ain, H.B.U., Saeed, F., Barrow, C.J., Dunshea, F.R., Suleria, H.A.R. (2020). Food Processing Waste: A Potential Source for Bioactive Compounds. In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_45-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_45-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics