Skip to main content

Bioactive Compounds of Guava (Psidium guajava L.)

  • Living reference work entry
  • First Online:
  • 243 Accesses

Part of the book series: Reference Series in Phytochemistry ((RSP))

Abstract

Guava (Psidium guajava), a popular fruit which is used as a common dessert, has been found as wealthy in nutrients, including vitamins and minerals that are significant for human health. The part of a guava tree (root, bark, leaves, and fruits) is used traditionally for treating certain diseases. The guava extracts have the potential to act as powerful antioxidants against hepatic diseases as well as cancer. The vitamins present in guava help the body to improve the immunity. The other health benefits include the ability to fight against certain diseases like scurvy and thyroid diseases, and it is essential for the brain and eyesight, along with compensating the weight loss. The present chapter mainly focuses on the beneficial activities of guava and nutritional contents of the fruit along with health benefits.

This is a preview of subscription content, log in via an institution.

Abbreviations

ADP:

Adenosine-5-diphosphate

cGMP:

Cyclic guanosine monophosphate

COX-2:

Cyclooxygenase-2

DNA:

Deoxyribonucleic acid

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

FAO:

Food and Agriculture Organization

GAE:

Gallic acid equivalent

H2O2:

Hydrogen peroxide

HbA1c:

Hemoglobin A1c

HOCl:

Hypochlorous acid

HOMA-IR:

Homeostasis model assessment of insulin resistance

HOMA-β:

Homeostasis model assessment of β-cell function

iNOS:

Inducible nitric oxide synthase

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

PPARγ:

Peroxisome proliferator-activated receptor γ

WHO:

World Health Organization

References

  1. Padilla-Ramirez JS, González-Gaona E (2010) Collection and characterization of Mexican guava (Psidium guajava L.) germplasm. Acta Hortic 849:49–54. https://doi.org/10.17660/ActaHortic.2010.849.4

    Article  Google Scholar 

  2. Quijano CE, Pino JA (2007) Characterization of volatile compounds in guava (Psidium guajava L.) varieties from Colombia. Rev CENIC Cienc Quím 38(3):367–370. http://www.redalyc.org/articulo.oa?id=181621616002

    Google Scholar 

  3. Thaipong K, Boonprakob U (2005) Genetic and environmental variance components in guava fruit qualities. Sci Hortic 104(1):37–47. https://doi.org/10.1016/j.scienta.2004.07.008

    Article  CAS  Google Scholar 

  4. Singh P, Jain V (2007) Fruit growth attributes of guava (Psidium guajava L.) cv. ‘Allahabad Safeda’ under agroclimatic conditions of Chhattisgarh. 1st International Guava Symposium, India. Acta Hortic 735:335–338. https://doi.org/10.17660/ActaHortic.2007.735.47

    Article  Google Scholar 

  5. Morton JF (2000) Guava. In: Fruits of warm climates. Miami, pp 356–363. http://www.newcrop.hort.purdue.edu/newcrop/morton/guava.html. Accessed 24 Nov 2013

  6. Rodriguez NN, Valdés-Infante J, Velázquez JB, Rivero D, Sourd DG, Martínez F, Tamayo R, Rodríguez JA (2010) ColecciónCubana de Germoplasma de guayabo (Psidium guajava L.). Establecimiento, caracterización y selección de cultivares. Citri Frut 27:28–38. http://www.actaf.co.cu/revistas/revista_citrifrut/Citrus%201%202010/RCA5_27_1_%202010.pdf

    Google Scholar 

  7. Mauricio ER, Jorge-Ivan DA, Luz-Patricia RS (2012) Lipophilic antioxidant activity of guava fruit varieties Palmira ICA I, regional Roja and regional Blanca in four ripening stages. Agron Colomb 30:251–259. http://www.revistas.unal.edu.co/index.php/agrocol/article/view/31719/47011

    Google Scholar 

  8. Lim YY, Lim TT, Tee JJ (2006) Antioxidant properties of guava fruit: comparison with some local fruits. Sunway Acad J 3:9–20. http://www.core.ac.uk/download/pdf/148366314.pdf

    Google Scholar 

  9. Perales MA, Padilla JS, González E, Reyes HR (2005) Manual para la producción integral de la guayaba. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Instituto Nacional de InvestigacionesForestales, Agrarias y Pecuarias. Centro de Investigación Regional Norte Centro, Campo Experimental Pabellón, Pabellón de Arteaga, p 135

    Google Scholar 

  10. Mandal S, Sarkar R, Patra P, Nandan CK, Das D, Bhanja SK, Islam SS (2009) Structural studies of a heteropolysaccharide (PS-I) isolated from hot water extract of fruits of Psidium guajava (Guava). Carbohydr Res 344:1365–1370. https://doi.org/10.1016/j.carres.2009.05.009

    Article  PubMed  CAS  Google Scholar 

  11. Medina ML, Pagano FG (2003) Characterization of Psidium guajava pulp “Criollaroja”. Revista de la Facultad de Agronomía de la Universidad Del Zulia 20:72–86. https://pdfs.semanticscholar.org/ab83/865aae28b59cac9703bab0440903466c58d7.pdf

    Google Scholar 

  12. Conway P (2002) Tree medicine a comprehensive guide to the healing power of over 170 trees. Int J Aromather 12(3):170–171. https://doi.org/10.1016/s0962-4562(02)00076-0

    Article  Google Scholar 

  13. Iwu MM (1993) Handbook of African medicinal plants. CRC Press, London, pp 786–789

    Google Scholar 

  14. Hernandez DF (1971) Plants of the Philippines. First printing. M&L Licudine Enterprises, University of the Philippines, Chairman, Consuelo V, Manila, pp 678–680

    Google Scholar 

  15. Fujita T, Massaharu K, Tamotsu K, Kenji Y, Kejichi O, Kiyoshi S (1985) Nutrient contents in fruit and leaves of guava and in leaves of Japanese persimmon. Seikatsu Eisei 29:206–209. https://doi.org/10.11468/seikatsueisei1957.29.206

    Article  CAS  Google Scholar 

  16. Nadkarni KM, Nadkarni AK (1999) Indian materia medica with Ayurvedic, Unani-tibbi, Siddha, allopathic, homeopathic, naturopathic and home remedies, vol 1. Popular Prakashan Private Ltd, Bombay, pp 142–149

    Google Scholar 

  17. Patel R, Deka BC, Deshmukh NA, Roy D (2011) Variabilities in guava (Psidium guajava L.) genotypes for growth, yield and quality attributes at mid-hills of Meghalaya. Indian J Hill Frmg 24(1–2):24–28. https://www.nrclitchi.org/uploads/research-papers/R-K-Patel/33.pdf

    Google Scholar 

  18. Verma KA, Rajkumar V, Banerjee R, Biswas S, Arun D (2013) Guava (Psidium guajava L.) powder as an antioxidant dietary fibre in sheep meat nuggets. Asian-Aust J Anim Sci 26:886–895. https://doi.org/10.5713/ajas.2012.12671

    Article  CAS  Google Scholar 

  19. Bernardino-Nicanor A, Ortiz-Moreno A, Martinez-Ayala AL, Dávila-Ortiz G (2001) Guava seed protein isolate: functional and nutritional characterization. Food Chem 25:76–89. https://doi.org/10.1111/j.1745-4514.2001.tb00725.x

    Article  Google Scholar 

  20. Lin CY, Yin MC (2012) Renal protective effects of extracts from guava fruit (Psidium guajava L.) in diabetic mice. Plant Foods Hum Nutr 67(3):303–308. https://doi.org/10.1007/s11130-012-0294-0

    Article  PubMed  CAS  Google Scholar 

  21. Alquezar B, Rodrigo MJ, Zacarías L (2008) Regulation of carotenoid biosynthesis during fruit maturation in the red fleshed orange mutant Cara Cara. Phytochemistry 69:1997–2007. https://doi.org/10.1016/j.phytochem.2008.04.020

    Article  PubMed  CAS  Google Scholar 

  22. Pommer CV, de-Oliveira OF, Santos CA (2013) Goiaba. Recursosgenéticos e melhoramento. Edufersa, Mossoró, p 126

    Google Scholar 

  23. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19(6–7):669–675. https://doi.org/10.1016/j.jfca.2006.01.003

    Article  CAS  Google Scholar 

  24. Flores G, Wu SB, Negrin A, Kennely EJ (2015) Chemical composition and antioxidant of seven cultivars of guava (Psidium guajava) fruits. Food Chem 170:371–335. https://doi.org/10.1016/j.foodchem.2014.08.076

    Article  CAS  Google Scholar 

  25. Sharma S, Rajat K, Prasad R, Vasudevan P (1999) Biology and potential of Psidium guajava. J Sci Ind Res 58:414–421. http://www.opr.niscair.res.in/bitstream/123456789/17828/1/JSIR%2058%286%29%20414-421.pdf

    Google Scholar 

  26. Mercadante AZ, Steck A, Pfander H (1999) Carotenoids from guava (Psidium guajava L.): isolation and structure elucidation. J Agric Food Chem 47(1):145–151. https://doi.org/10.1021/jf980405r

    Article  PubMed  CAS  Google Scholar 

  27. Mitra SK (2010) Important Myrtaceae fruit crops. Proceedings of the Second International Symposium on guava and other Myrtaceae. Acta Hortic 849:33–38. https://doi.org/10.17660/ActaHortic.2010.849.2

    Article  CAS  Google Scholar 

  28. Rodriguez NN, Herrero V-I, Juliette B, Delmiro V, Coto B, Ritter O, Enrique RW (2004) Morphological, agronomic and molecular characterization of Cuban accessions of guava (Psidium guajava L.). J Gen Breed 58:79–90. http://agris.fao.org/agris-search/search.do?recordID=IT2005602488

    CAS  Google Scholar 

  29. Charles WW, Philip ES, Carl WC (2006) Determination of organic acids and sugars in Psidium guajava L. cultivars by high-performance liquid chromatography. J Sci Food Agric 33:777–780. https://doi.org/10.1002/jsfa.2740330815

    Article  Google Scholar 

  30. Shu J, Chou G, Wang Z (2009) Triterpenoid constituents in fruits of Psidium guajava. Zhongguo Zhong Yao Za Zhi 34(23):3047–3050. PMID: 20222421

    PubMed  CAS  Google Scholar 

  31. Misra K, Seshadri TR (1968) Chemical components of the fruits of Psidium guajava. Phytochemistry 7(4):641–645. https://doi.org/10.1016/s0031-9422(00)88240-0

    Article  CAS  Google Scholar 

  32. Jain N, Dhawan K, Malhotra S, Singh R (2003) Biochemistry of fruit ripening of guava (Psidium guajava L.): compositional and enzymatic changes. Plant Foods Hum Nutr 58:309–315. https://doi.org/10.1023/B:QUAL.0000040285.50062.4b

    Article  PubMed  CAS  Google Scholar 

  33. Shu J, Chou G, Wang Z (2010) Two new benzophenone glycosides from the fruit of Psidium guajava L. Fitoterapia 81(6):532–535. https://doi.org/10.1016/j.fitote.2010.01.014

    Article  PubMed  CAS  Google Scholar 

  34. Paniandy JC, Chane-Ming J, Pieribattesti JC (2000) Chemical composition of the essential oil and headspace solid-phase microextraction of the guava fruit (Psidium guajava L.). J Essent Oil Res 12:153–158. https://doi.org/10.1080/10412905.2000.9699486

    Article  CAS  Google Scholar 

  35. Dweck AC (2001) A review of Psidium guajava. Malays J Med Sci 8:27–30. http://www.dweckdata.co.uk/Published_papers/Psidium_guajava.pdf

    Google Scholar 

  36. Hwang JS, Yen YP, Chang MC, Liu CY (2002) Extraction and identification of volatile components of guava fruits and their attraction to oriental fruit fly, Bactrocera dorsalis (Hendel). Plant Prot Bull 44(4):279–302. https://eurekamag.com/research/003/766/003766269.php

    CAS  Google Scholar 

  37. Joseph B, Priya RM (2011) Phytochemical and biopharmaceutical aspects of Psidium guajava (L.) essential oil: a review. Res J Med Plant 5(4). https://doi.org/10.3923/rjmp.2011.432.442

    Article  Google Scholar 

  38. Pino J, Gutiérrez S, Rosado A (1990) Volatile constituents from a guava (Psidium guajava L.) natural flavour concentrate. Food Nahrung 34:279–282. https://doi.org/10.1002/food.19900340321

    Article  CAS  Google Scholar 

  39. Jordan MJ, Margaria CA, Shaw PE, Goodner KL (2003) Volatile components and aroma active compounds in aqueous essence and fresh pink guava fruit puree (Psidium guajava L.) by GC-MS and multidimensional GC/GC-O. J Agric Food Chem 51:1421–1426. https://doi.org/10.1021/jf020765l

    Article  PubMed  CAS  Google Scholar 

  40. Chen HC, Sheu MJ, Lin LY, Wu CM (2008) Volatile constituents of six cultivars of mature guava (Psidium guajava L.) fruits from Taiwan. Acta Hortic 765:273–278. https://doi.org/10.17660/ActaHortic.2008.765.34

    Article  CAS  Google Scholar 

  41. Toth-Markus M, Siddiqui S, Kovács E, Roth E, Erika S, Emőke (2005) Changes in flavour, cell wall degrading enzymes and ultrastructure of guava (Psidium guajava L.) during ripening. Acta Aliment 34:259–266. https://doi.org/10.1556/AAlim.34.2005.3.8

    Article  CAS  Google Scholar 

  42. Lee S, Kim YS, Choi HK, Cho SK (2011) Determination of the volatile components in the fruits and leaves of guava plants (Psidium guajava L.) grown on Jeju Island, South Korea. J Essent Oil Res 23:52–56. https://doi.org/10.1080/10412905.2011.9712282

    Article  CAS  Google Scholar 

  43. Singh R, Rastogi S, Singh R, Ghosh S, Niaz M (1992) Effects of guava intake on serum total and high-density lipoprotein cholesterol levels and on systemic blood pressure. Am J Cardiol 70(15):1287–1291. https://doi.org/10.1016/0002-9149(92)90763-o

    Article  PubMed  CAS  Google Scholar 

  44. Ioannidis PJA (2018) Diagnosis and treatment of hypertension in the 2017 ACC/AHA guidelines and in the real world. JAMA 319(2):115–116. https://doi.org/10.1001/jama.2017.19672

    Article  PubMed  Google Scholar 

  45. Ayub MY, Norazmir MN, Mamot S, Jeeven K, Hadijah H (2010) Anti-hypertensive effect of pink guava (Psidium guajava) puree on spontaneous hypertensive rats. Int Food Res J 7(1):89–96

    Google Scholar 

  46. Nor NM, Yatim AM (2011) Effects of pink guava (Psidium guajava) puree supplementation on antioxidant enzyme activities and organ function of spontaneous hypertensive rat. Sains Malays 40(4):369–372. http://www.ukm.my/jsm/pdf_files/SM-PDF-40-4-2011/13%20Norazmir.pdf

    CAS  Google Scholar 

  47. Taylor L (2005) The healing power of rainforest herbs. USDA Nutritional Data Base. http://www.nutritiondata.com. Accessed 24 Nov 2013

  48. Rahmat A, Abu MF, Faezah N, Hambali Z (2004) The effects of consumption of guava (Psidium guajava) or papaya (Carica papaya) on total antioxidant and lipid profile in normal male youth. Asia Pac J Clin Nutr 13:S106. http://apjcn.nhri.org.tw/server/APJCN/ProcNutSoc/2000%2B/2004/106.pdf

    Google Scholar 

  49. Esmael OA, Sonbul SN, Kumosani TA, Moselhy SS (2015) Hypolipidemic effect of fruit fibers in rats fed with high dietary fat. Toxicol Ind Health 31(3):281–288. https://doi.org/10.1177/0748233712472526

    Article  PubMed  CAS  Google Scholar 

  50. Rasheed HM, Khan T, Wahid F, Khan R, Shah AJ (2016) Chemical composition and vascular and intestinal smooth muscle relaxant effects of the essential oil from Psidium guajava fruit. Pharm Biol 54(11):2679–2684. https://doi.org/10.1080/13880209.2016.1178309

    Article  PubMed  Google Scholar 

  51. Thaptimthong T, Kasemsuk T, Sibmooh N, Unchern S (2016) Platelet inhibitory effects of juices from Pachyrhizuserosus L. root and Psidium guajava L. fruit: a randomized controlled trial in healthy volunteers. BMC Complement Altern Med 3(16):269. https://doi.org/10.1186/s12906-016-1255-1

    Article  CAS  Google Scholar 

  52. Nagaraju N, Rao KN (1989) Folk-medicine for diabetes from Rayalaseema of Andhra Pradesh. Anc Sci Life 9:31–35. http://pdfs.semanticscholar.org/8ed8/83fe86400f19dec1fcb02bd0feebac864f79.pdf

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Makheswari MU, Sudarsanam D (2012) Database on antidiabetic indigenous plants of Tamil Nadu. India Int J Pharm Sci Res 3:287–293. http://www.ijpsr.info/docs/IJPSR12-03-02-001.pdf

    Google Scholar 

  54. Cheng J, Yang R (1983) Hypoglycemic effect of guava juice in mice and human subjects. Am J Chin Med 11(1–4):74–76. https://doi.org/10.1142/s0192415x83000124

    Article  PubMed  CAS  Google Scholar 

  55. Chang WS (1982) Studies on active principles of hypoglycemic effect from Psidium guajava (I). Thesis, The Graduate Institute of Pharmacy, Taipei Medical College

    Google Scholar 

  56. Rai PK, Jaiswal D, Mehta S, Watal G (2009) Anti-hyperglycaemic potential of Psidium guajava raw fruit peel. Indian J Med Res 129(5):561–565. http://medind.nic.in/iby/t09/i5/ibyt09i5p561.pdf

    PubMed  Google Scholar 

  57. Kumari S, Rakavi R, Mangaraj M (2016) Effect of guava in blood glucose and lipid profile in healthy human subjects: a randomized controlled study. J Clin Diagn Res 10(9):BC04–BC07. https://doi.org/10.7860/JCDR/2016/21291.8425

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Tanveer A, Akram K, Farooq U, Hayat Z, Shafi A (2017) Management of diabetic complications through fruit flavonoids as a natural remedy. Crit Rev Food Sci Nutr 57(7):1411–1422. https://doi.org/10.1080/10408398.2014.1000482

    Article  PubMed  CAS  Google Scholar 

  59. Lin CF, Kuo YT, Chen TY, Chien CT (2016) Quercetin-rich guava (Psidium guajava) juice in combination with trehalose reduces autophagy, apoptosis and pyroptosis formation in the kidney and pancreas of type II diabetic rats. Molecules 21(3):334. https://doi.org/10.3390/molecules21030334

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jiao Y, Zhang M, Wang S, Yan C (2017) Consumption of guava may have beneficial effects in type 2 diabetes: a bioactive perspective. Int J Biol Macromol 101:543–552. https://doi.org/10.1016/j.ijbiomac.2017.03.130

    Article  PubMed  CAS  Google Scholar 

  61. Jiao Y, Hua D, Huang D, Zhang Q, Yan C (2018) Characterization of a new heteropolysaccharide from green guava and its application as an α-glucosidase inhibitor for the treatment of type II diabetes. Food Funct 9(7):3997–4007. https://doi.org/10.1039/c8fo00790j

    Article  PubMed  CAS  Google Scholar 

  62. Li PY, Hsu CC, Yin MC, Kuo YH, Tang FY, Chao CY (2015) Protective effects of red guava on inflammation and oxidative stress in streptozotocin-induced diabetic mice. Molecules 20(12):22341–22350. https://doi.org/10.3390/molecules201219831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Muller U, Stübl F, Schwarzinger B, Sandner G, Iken M, Himmelsbach M, Schwarzinger C, Ollinger N, Stadlbauer V, Höglinger O, Kühne T, Lanzerstorfer P, Weghuber J (2018) In vitro and In vivo inhibition of intestinal glucose transport by guava (Psidium guajava) extracts. Mol Nutr Food Res 62(11):e1701012. https://doi.org/10.1002/mnfr.201701012

    Article  PubMed  CAS  Google Scholar 

  64. Yusof RM, Said M (2004) Effect of high fibre fruit (Guava-Psidium guajava L.) on the serum glucose level in induced diabetic mice. Asia Pac J Clin Nutr 13:S135

    Google Scholar 

  65. Hsieh CL, Lin YC, Ko WS, Peng CH, Huang CN, Peng R (2005) Inhibitory effect of some selected nutraceutic herbs on LDL glycation induced by glucose and glyoxal. J Ethnopharmacol 102(3):357–363. https://doi.org/10.1016/j.jep.2005.06.044

    Article  PubMed  Google Scholar 

  66. Fetter M, Vizzotto M, Dutra C, Diandra GT (2010) Propriedadesfuncionais de araçá-amarelo, araçá-vermelho (Psidium cattleyanum Sabine) e araçá-pera (P. acutangulum D.C.) cultivadosem Pelotas/RS. Braz J Food Technol 13:92–95. https://doi.org/10.4260/bjft20101304115

    Article  Google Scholar 

  67. Martinez R, Torres P, Meneses MA, Figueroa JG, Pérez-Álvarez JA, Viuda-Martos M (2012) Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem 135(3):1520–1526. https://doi.org/10.1016/j.foodchem.2012.05.057

    Article  PubMed  CAS  Google Scholar 

  68. Malacrida C, Jorge N (2013) Fatty acids and some antioxidant compounds of Psidium guajava seed oil. Acta Aliment 42:371–378. https://doi.org/10.1556/AAlim.2012.0010

    Article  CAS  Google Scholar 

  69. Kong KW, Ismail A (2011) Lycopene content and lipophilic antioxidant capacity of by-products from Psidium guajava fruits produced during puree production industry. Food Bioprod Process 89(1):53–61. https://doi.org/10.1016/j.fbp.2010.02.004

    Article  Google Scholar 

  70. Vasconcelos AG, Amorim ADGN, Dos Santos RC, Souza JMT, de Souza LKM, Araújo TSL, Nicolau LAD, de Lima Carvalho L, de Aquino PEA, da Silva Martins C, Ropke CD, Soares PMG, Kuckelhaus SAS, Medeiros JR, Leite JRSA (2017) Lycopene rich extract from red guava (Psidium guajava L.) displays anti-inflammatory and antioxidant profile by reducing suggestive hallmarks of acute inflammatory response in mice. Food Res Int 99(Pt 2):959–968. https://doi.org/10.1016/j.foodres.2017.01.017

    Article  PubMed  CAS  Google Scholar 

  71. Vasco C, Ruales J, Kamal-Eldin A (2008) Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem 111(4):816–823. https://doi.org/10.1016/j.foodchem.2008.04.054

    Article  CAS  Google Scholar 

  72. Brito CA, Siqueira PB, Souza JC, Bolini HM (2009) In vitro antioxidant capacity, phenolic, ascorbic acid and lycopene content of guava (Psidium guajava L.) juices and nectars. Boletim Do Centro De Pesquisa De Processamento De Alimentos 27(2). https://doi.org/10.5380/cep.v27i2.16529

  73. Chen KC, Hsieh CL, Peng CC, Hsieh-Li HM, Chiang HS, Huang KD, Peng RY (2007) Brain derived metastatic prostate cancer DU-145 cells are effectively inhibited in vitro by guava (Psidium guajava L.) leaf extracts. Nutr Cancer 58(1):93–106. https://doi.org/10.1080/01635580701308240

    Article  PubMed  CAS  Google Scholar 

  74. Sato R, Dang K, McPherson B, Brown A (2010) Anticancer activity of guava (Psidium guajava) extracts. J Compl Integr Med 7(1). https://doi.org/10.2202/1553-3840.1361

  75. Gao J, Chen J, Tang X, Pan L, Fang F, Xu L, Zhao X, Xu QZ (2006) Mechanism underlying mitochondrial protection of asiatic acid against hepatotoxicity in mice. J Pharm Pharmacol 58(2):227–233. https://doi.org/10.1211/jpp.58.2.0010

    Article  PubMed  CAS  Google Scholar 

  76. Gull J, Sultana B, Anwar F, Naseer R, Ashraf M, Ashrafuzzaman M (2013) Variation in antioxidant attributes at three ripening stages of guava (Psidium guajava L.) fruit from different geographical regions of Pakistan. Fitoterapia 89:74–79. https://doi.org/10.1016/j.fitote.2013.05.015

    Article  CAS  Google Scholar 

  77. Rojas-Garbanzo C, Gleichenhagen M, Heller A, Esquivel P, Schulze-Kaysers N, Schieber A (2017) Carotenoid profile, antioxidant capacity, and chromoplasts of pink guava (Psidium guajava L. cv. ‘Criolla’) during fruit ripening. J Agric Food Chem 65(18):3737–3747. https://doi.org/10.1021/acs.jafc.6b04560

    Article  PubMed  CAS  Google Scholar 

  78. Qin XJ, Yu Q, Yan H, Khan A, Feng MY, Li PP, Hao XJ, An LK, Liu HY (2017) Meroterpenoids with antitumor activities from guava (Psidium guajava). J Agric Food Chem 65(24):4993–4999. https://doi.org/10.1021/acs.jafc.7b01762

    Article  PubMed  CAS  Google Scholar 

  79. Alvarez-Suarez JM, Giampieri F, Gasparrini M, Mazzoni L, Forbes-Hernández TY, Afrin S, Battino M (2018) Guava (Psidium guajava L. cv. Red suprema) crude extract protect human dermal fibroblasts against cytotoxic damage mediated by oxidative stress. Plant Foods Hum Nutr 73(1):18–24. https://doi.org/10.1007/s11130-018-0657-2

    Article  PubMed  CAS  Google Scholar 

  80. Campbell JD, Cole M, Bunditrutavorn B, Vella AT (1999) Ascorbic acid is a potent inhibitor of various forms of T cell apoptosis. Cell Immunol 194(1):1–5. https://doi.org/10.1006/cimm.1999.1485

    Article  PubMed  CAS  Google Scholar 

  81. Farhana JA, Hossain F, Mowlah A (2017) Antibacterial Effects of Guava (Psidium guajava L.) extracts against food borne pathogens. IJNFS 6(1):1–5. https://doi.org/10.11648/j.ijnfs.20170601.11

    Article  CAS  Google Scholar 

  82. Shetty RM, Goyal A, Goyal B, Tamrakar A (2015) An antimicrobial efficacy of guava and tulsi against Streptococcus mutants and E. faecalis: in vitro study. IRJNAS 2(1):89–99. http://www.aarf.asia/applied2.php?p=Volume2,Issue1,January2015

    Google Scholar 

  83. Porwal K, Pal S, Dev K, China SP, Kumar Y, Singh C, Barbhuyan T, Sinha N, Sanyal S, Trivedi AK, Maurya R, Chattopadhyay N (2017) Guava fruit extract and its triterpene constituents have osteoanabolic effect: stimulation of osteoblast differentiation by activation of mitochondrial respiration via the Wnt/β-catenin signaling. J Nutr Biochem 44:22–34. https://doi.org/10.1016/j.jnutbio.2017.02.011

    Article  PubMed  CAS  Google Scholar 

  84. Huang CS, Yin MC, Chiu LC (2011) Antihyperglycemic and antioxidative potential of Psidium guajava fruit in streptozotocin-induced diabetic rats. Food Chem Toxicol 49(9):2189–2195. https://doi.org/10.1016/j.fct.2011.05.032

    Article  PubMed  CAS  Google Scholar 

  85. Budin SB, Ismail H, Chong PL (2013) Psidium guajava fruit peel extracts reduces oxidative stress of pancreas in streptozotocin-induced diabetic rats. Sains Malays 42(6):707–713. http://pdfs.semanticscholar.org/1881/adee9b67639d6aadfbb7e177063a11b760a3.pdf?_ga=2.91454686.551725494.1565681882-1625310770.1564668469

    Google Scholar 

  86. Wu TK, Liu Hs C, Lin SY, Yu YL, Wei CW (2018) Extracts from guava fruit protects renal tubular endothelial cells against acetaminophen-induced cytotoxicity. Mol Med Rep 17(4):5544–5551. https://doi.org/10.3892/mmr.2018.8529

    Article  PubMed  CAS  Google Scholar 

  87. Joint FAO/WHO Expert Group on Requirements of Ascorbic Acid Vitamin D, Vitamin B12, World Health Organization and Food and Agriculture Organization of the United Nations (1970) Requirements of ascorbic acid, vitamin D, vitamin B12, folate, and iron: report of a Joint FAO/WHO expert group [meeting held in Geneva from 21 April to 2 May 1969]. World Health Organization. http://apps.who.int/iris/handle/10665/40780

  88. Medical Research Council (GB) (1953) Vitamin C requirement of human adults: a report by the vitamin C subcommittee of the accessory food factors committee and AE Barnes. Medical Research Council Special Report Series. Compiled by Bartley W, Krebs HA, O’Brien JRP. HMSO, London, p 2801

    Google Scholar 

  89. Hodges RE, Hood J, Canham JE, Sauberlich HE, Baker EM (1971) Clinical manifestations of ascorbic acid deficiency in man. Am J Clin Nutr 24(4):432–443. https://doi.org/10.1093/ajcn/24.4.432

    Article  PubMed  CAS  Google Scholar 

  90. Baker HM, Frank OA, Chen T, Feingold S, Deangelis BA, Baker ER (1984) Vitamin content of some normal human brain segments. J Neurosci Res 11(4):419–435. https://doi.org/10.1002/jnr.490110409

    Article  PubMed  CAS  Google Scholar 

  91. Burri BJ (1997) Beta-carotene and human health: a review of current research. Nutr Res 17(3):547–580. https://doi.org/10.1016/s0271-5317(97)00011-0

    Article  CAS  Google Scholar 

  92. Rasic-Milutinovic Z, Jovanovic DD, Bogdanovic G, Trifunovic J, Mutic J (2017) Potential influence of selenium, copper, zinc and cadmium on L-thyroxine substitution in patients with Hashimoto thyroiditis and hypothyroidism. Exp Clin Endocrinol Diabetes 125(2):79–85. https://doi.org/10.1055/s-0042-116070

    Article  PubMed  CAS  Google Scholar 

  93. Zhou L, Li D, Wang J, Liu Y, Wu J (2007) Antibacterial phenolic compounds from the spines of Gleditsiasinensis Lam. Nat Prod Res 21(4):283–291. https://doi.org/10.1080/14786410701192637

    Article  PubMed  CAS  Google Scholar 

  94. Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini Rev Med Chem 12(8):749–767. PMID: 22512578

    Article  CAS  PubMed  Google Scholar 

  95. Pei K, Ou J, Huang J, Ou S (2016) p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. J Sci Food Agric 6(9):2952–2962. https://doi.org/10.1002/jsfa.7578

    Article  CAS  Google Scholar 

  96. Okuda T, Hatano T, Yazaki K (1984) Guavin B, an ellagitannin of novel type. Chem Pharm Bull 32(9):3787–3788. https://doi.org/10.1248/cpb.32.3787

    Article  CAS  Google Scholar 

  97. Ojewole JA (2006) Anti-inflammatory and analgesic effects of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rats and mice. Methods Find Exp Clin Pharmacol 28(7):441–446. https://doi.org/10.1358/mf.2006.28.7.1003578

    Article  PubMed  CAS  Google Scholar 

  98. Abdulkhaleq LA, Assi MA, Noor MH, Abdullah R, Saad MZ, Taufiq-Yap YH (2017) Therapeutic uses of epicatechin in diabetes and cancer. Vet World 10(8):869–872. https://doi.org/10.14202/vetworld.2017.869-872

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Barzegar A (2016) Antioxidant activity of polyphenolic myricetinin vitro cell- free and cell-based systems. Mol Biol Res Commun 5(2):87–95. http://mbrc.shirazu.ac.ir/article_3651_1b1776bea5547b1a18c4e0d34dd08417.pdf

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Liang Q, Qian H, Yao W (2005) Identification of flavonoids and their glycosides by high-performance liquid chromatography with electrospray ionization mass spectrometry and with diode array ultraviolet detection. Eur J Mass Spectrom (Chichester) 11(1):93–101. https://doi.org/10.1255/ejms.710

    Article  CAS  Google Scholar 

  101. Wang J, Fang X, Ge LH, Cao F, Zhao L, Wang Z, Xiao W (2018) Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One 13(5):e0197563. https://doi.org/10.1371/journal.pone.0197563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Wang M, Sun J, Jiang Z, Xie W, Zhang X (2015) Hepatoprotective effect of kaempferol against alcoholic liver injury in mice. Am J Chin Med 43(2):241–254. https://doi.org/10.1142/S0192415X15500160.s

    Article  PubMed  Google Scholar 

  103. Li SY, Pu X (2011) Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol Pharm Bull 34(8):1291–1296. https://doi.org/10.1248/bpb.34.1291

    Article  PubMed  CAS  Google Scholar 

  104. Han XM, Liu C, Gao N, Zhao J, Wang F (2018) Kaempferol suppresses proliferation but increases apoptosis and autophagy by up-regulating microRNA-340 in human lung cancer cells. Biomed Pharmacother 108:809–816. https://doi.org/10.1016/j.biopha.2018.09.087

    Article  PubMed  CAS  Google Scholar 

  105. Vijayakumar K, Rengarajan RL, Radhakrishnan R, Mathew S, Qadri I, Anand AV (2019) Psidium guajava leaf extracts and their quercetin protect HepG2 cell lines against CCL4 induced cytotoxicity. Indian J Clin Biochem 34(3):324–329. https://doi.org/10.1007/s12291-018-0752-z

    Article  PubMed  CAS  Google Scholar 

  106. Vijayakumar K, Rengarajan RL, Radhakrishnan R, Anand AV (2018) Hypolipidemiceffect of Psidium guajava leaf extract against hepatotoxicity in rats. Pharmacogn Mag 14(53):4–8. https://doi.org/10.4103/pm.pm_167_17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Endale M, Park S, Kim S, Kim S, Yang Y, Cho JY, Rhee MH (2013) Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 218(12):1452–1467. https://doi.org/10.1016/j.imbio.2013.04.019

    Article  PubMed  CAS  Google Scholar 

  108. Aguirre L, Arias NS, Macarulla MT, Gracia AI, Portillo MP (2011) Beneficial effects of quercetin on obesity and diabetes. Open Nutraceuticals J 4:189–198. https://doi.org/10.2174/1876396001104010189

    Article  CAS  Google Scholar 

  109. Zhang WJ, Chen BT, Wang CY, Zhu QH, Mo ZX (2003) Mechanism of quercetin as an antidiarrheal agent. Di Yi Jun Yi Da Xue Xue Bao 23(10):1029–1031. http://europepmc.org/abstract/med/14559685

    PubMed  CAS  Google Scholar 

  110. Formica JV, Regelson W (1995) Review of the biology of quercetin and related bioflavonoids. Food Chem Toxicol 33(12):1061–1080. https://doi.org/10.1016/0278-6915(95)00077-1

    Article  PubMed  CAS  Google Scholar 

  111. Yamashiro S, Noguchi K, Matsuzaki T, Miyagi K, Nakasone J, Sakanashi M, Sakanashi M, Kukita I, Aniya Y (2003) Cardioprotective effects of extracts from Psidium guajava L and Limoniumwrightii, Okinawan medicinal plants, against ischemia-reperfusion injury in perfused rat hearts. Pharmacology 67(3):128–135. https://doi.org/10.1159/000067799

    Article  PubMed  CAS  Google Scholar 

  112. Chaichana N, Apisariyakul A (1996) Cholinergic blocking effect of quercetin. Thai J Pharmacol 18:1–15. https://www.tci-thaijo.org/index.php/TJP/article/view/37221

    Google Scholar 

  113. Apisariyakul A, Chaichana N, Takemura H (1999) Dual effects of quercetin on contraction in cardiac and skeletal muscle preparations. Res Commun Mol Pathol Pharmacol 105(1–2):129–138. PMID: 10850376

    PubMed  CAS  Google Scholar 

  114. Duarte J, Perez-Vizcaino F, Zarzuelo AD, Jiménez JM, Tamargo JL (1993) Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur J Pharmacol 239(1–3):1–7. https://doi.org/10.1016/0014-2999(93)90968-n

    Article  PubMed  CAS  Google Scholar 

  115. Prabu GR, Gnanamani A, Sadulla S (2006) Guaijaverin- a plant flavonoid as potential antiplaque agent against Streptococcus mutans. J Appl Microbiol 101(2):487–495. https://doi.org/10.1111/j.1365-2672.2006.02912.x

    Article  PubMed  CAS  Google Scholar 

  116. Arima H, Danno G (2002) Isolation of antimicrobial compounds from guava (Psidium guajava L.) and their structural elucidation. Biosci Biotechnol Biochem 66(8):1727–1730. https://doi.org/10.1271/bbb.66.1727

    Article  PubMed  CAS  Google Scholar 

  117. Palozza P, Krinsky NI (1992) Antioxidant effects of carotenoids in vivo and in vitro: an overview. Meth Enzymol 213:403–420. https://doi.org/10.1016/0076-6879(92)13142-k

    Article  CAS  Google Scholar 

  118. Nagar PK, Rao TR (1981) Studies on endogenous cytokinins in Guava (Psidium guajava L.). AoB Plants 48(6):845–852. https://doi.org/10.1093/oxfordjournals.aob.a086191

    Article  CAS  Google Scholar 

  119. Lappas CM (2014) The plant hormone zeatinriboside inhibits T lymphocyte activity via adenosine A2A receptor activation. Cell Mol Immunol 12:107–112. https://doi.org/10.1038/cmi.2014.33

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Begum S, Hassan S, Siddiqui B (2002) Two new triterpenoids from the fresh leaves of Psidium guajava. Planta Med 68(12):1149–1152. https://doi.org/10.1055/s-2002-36353

    Article  PubMed  CAS  Google Scholar 

  121. Jesus JA, Lago JH, Laurenti MD, Yamamoto ES, Passero LF (2015) Antimicrobial activity of oleanolic and ursolic acids: an update. Evid Based Complement Alternat Med 2015:620472. https://doi.org/10.1155/2015/620472

    Article  PubMed  PubMed Central  Google Scholar 

  122. Begum S, Hassan SI, Siddiqui BS, Shaheen F, NabeelGhayur M, Gilani AH (2002) Triterpenoids from the leaves of Psidium guajava. Phytochemistry 61(4):399–403. https://doi.org/10.1016/s0031-9422(02)00190-5

    Article  PubMed  CAS  Google Scholar 

  123. Begum S, Siddiqui B, Hassan S (2002) Triterpenoids from Psidium guajava leaves. Nat Prod Lett 16(3):173–177. https://doi.org/10.1080/10575630290004251

    Article  PubMed  CAS  Google Scholar 

  124. Bin Sayeed M, Karim S, Sharmin T, Morshed M (2016) Critical analysis on characterization, systemic effect, and therapeutic potential of beta-sitosterol: a plant-derived orphan phytosterol. Medicines (Basel) 3(4):29. https://doi.org/10.3390/medicines3040029

    Article  CAS  Google Scholar 

  125. Conde Garcia EA, Nascimento VT, Santiago Santos AB (2003) Inotropic effects of extracts of Psidium guajava L. (guava) leaves on the Guinea pig atrium. Braz J Med Biol Res 36(5):661–668. https://doi.org/10.1590/s0100-879x2003000500014

    Article  PubMed  CAS  Google Scholar 

  126. Li J, Chen F, Luo J (1999) GC-MS analysis of essential oil from the leaves of Psidium guajava. Zhong Yao Cai 22(2):78–80. PMID 12575048

    PubMed  CAS  Google Scholar 

  127. Fidyt K, Fiedorowicz A, Strządała L, Szumny A (2016) β-Caryophyllene and β-caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Med 5(10):3007–3017. https://doi.org/10.1002/cam4.816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Siani AC, Ramos MFS, Menezes-de-Lima O, Ribeiro-dos-Santos R, Fernadez-Ferreira E, Soares ROA, Rosas EC, Susunaga GS, Guimaraes AC, Zoghbi MGB, Henriques MGMO (1999) Evaluation of anti-inflammatory-related activity of essential oils from the leaves and resin of species of Protium. J Ethnopharmacol 66(1):57–69. https://doi.org/10.1016/S0378-8741(98)00148-2

    Article  PubMed  CAS  Google Scholar 

  129. Chambial S, Dwivedi S, Shukla KK, John PJ, Sharma P (2013) Vitamin C in disease prevention and cure: an overview. Indian J Clin Biochem 28(4):314–328. https://doi.org/10.1007/s12291-013-0375-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Vijaya Anand .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vijaya Anand, A., Velayuthaprabhu, S., Rengarajan, R.L., Sampathkumar, P., Radhakrishnan, R. (2020). Bioactive Compounds of Guava (Psidium guajava L.). In: Murthy, H., Bapat, V. (eds) Bioactive Compounds in Underutilized Fruits and Nuts. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-06120-3_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-06120-3_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-06120-3

  • Online ISBN: 978-3-030-06120-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics