Skip to main content

Uncovering Dynamic Functional Connectivity of Parkinson’s Disease Using Topological Features and Sparse Group Lasso

  • Conference paper
  • First Online:
Brain Informatics (BI 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11309))

Included in the following conference series:

  • 1130 Accesses

Abstract

Neuro-degenerative diseases such as Parkinson’s Disease (PD) are clinically found to cause alternations and failures in brain connectivity. In this work, a new classification framework using dynamic functional connectivity and topological features is proposed, and it is shown that such framework can give better insights over discriminative difference of the disease itself. After utilizing sparse group lasso with anatomically labeled resting-state fMRI signal, both discriminating brain regions and voxels within can be identified easily. To give an overview of the effectiveness of such framework, the classification performance with the network features extracted on dynamic functional network is quantitatively evaluated. Experimental results show that either single feature of clustering coefficient or combined feature group of characteristic path length, diameter, eccentricity and radius perform well in classifying PD, and as a result the identified feature can lead to better interpretation for clinical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    1 TR represents the time between two successive data points in the time-series signal.

  2. 2.

    Mathematically, \(t_i=\frac{1}{2}\sum _{j,h\in N}a_{ij}a_{ih}a_{jh}\), where \(a_{ij}\) is the connection status between i and j: \(a_{ij} = 1\) when link (ij) exists (when i and j are neighbors); \(a_{ij} = 0\) otherwise (\(a_{ii} = 0\) for all i).

  3. 3.

    From the formula, C is only defined when \(k_i\) is larger than 1.

  4. 4.

    Mathematically, \(t_i^w = \frac{1}{2}\sum _{j,h\in N}(w_{ij}w_{ih}w_{jh})^{1/3}\), where \(w_{ij}\) is the connection weight between nodes i and j.

References

  1. Aftabuddin, M., Kundu, S.: AMINONET-a tool to construct and visualize amino acid networks, and to calculate topological parameters. J. Appl. Crystallogr. 43(2), 367–369 (2010)

    Article  Google Scholar 

  2. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  MathSciNet  Google Scholar 

  3. Börner, K., Sanyal, S., Vespignani, A.: Network science. Ann. Rev. Inf. Sci. Technol. 41(1), 537–607 (2007)

    Article  Google Scholar 

  4. Byun, H.Y., Lu, J.J., Mayberg, H.S., Günay, C.: Classification of resting state fMRI datasets using dynamic network clusters. In: Workshops at the Twenty-Eighth AAAI Conference on Artificial Intelligence (2014)

    Google Scholar 

  5. Chai, B., Walther, D., Beck, D., Fei-Fei, L.: Exploring functional connectivities of the human brain using multivariate information analysis. In: Advances in Neural Information Processing Systems, pp. 270–278 (2009)

    Google Scholar 

  6. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    MATH  Google Scholar 

  7. Estrada, E.: The Structure of Complex Networks: Theory and Applications. Oxford University Press, New York (2012)

    MATH  Google Scholar 

  8. Matthew Hutchison, R., et al.: Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013)

    Article  Google Scholar 

  9. Ioannides, A.A.: Dynamic functional connectivity. Curr. Opin. Neurobiol. 17(2), 161–170 (2007)

    Article  Google Scholar 

  10. Lancaster, J.L., et al.: Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10(3), 120–131 (2000)

    Article  Google Scholar 

  11. Lancaster, J.L., et al.: Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Hum. Brain Mapp. 5(4), 238 (1997)

    Article  Google Scholar 

  12. Liu, J., Ji, S., Ye, J., et al.: SLEP: sparse learning with efficient projections. Arizona State Univ. 6, 491 (2009)

    Google Scholar 

  13. Loewe, K., Grueschow, M., Stoppel, C.M., Kruse, R., Borgelt, C.: Fast construction of voxel-level functional connectivity graphs. BMC Neurosci. 15(1), 1 (2014)

    Article  Google Scholar 

  14. Duncan Luce, R., Perry, A.D.: A method of matrix analysis of group structure. Psychometrika 14(2), 95–116 (1949)

    Article  MathSciNet  Google Scholar 

  15. Madhyastha, T.M., Askren, M.K., Boord, P., Grabowski, T.J.: Dynamic connectivity at rest predicts attention task performance. Brain Connectivity 5(1), 45–59 (2015)

    Article  Google Scholar 

  16. Norman, K.A., Polyn, S.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends Cogn. Sci. 10(9), 424–430 (2006)

    Article  Google Scholar 

  17. Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71(6), 065103 (2005)

    Article  Google Scholar 

  18. Opsahl, T.: Triadic closure in two-mode networks: redefining the global and local clustering coefficients. Soc. Netw. 35(2), 159–167 (2013)

    Article  Google Scholar 

  19. Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Soc. Netw. 31(2), 155–163 (2009)

    Article  Google Scholar 

  20. Papo, D., Buldú, J.M., Boccaletti, S., Bullmore, E.T.: Complex network theory and the brain. Phil. Trans. R. Soc. B 369(1653), 20130520 (2014)

    Article  Google Scholar 

  21. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Patt. Anal. Mach. Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  22. Power, J.D., et al.: Functional network organization of the human brain. Neuron 72(4), 665–678 (2011)

    Article  Google Scholar 

  23. Richiardi, J., Eryilmaz, H., Schwartz, S., Vuilleumier, P., Van De Ville, D.: Decoding brain states from fmri connectivity graphs. Neuroimage 56(2), 616–626 (2011)

    Article  Google Scholar 

  24. Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52(3), 1059–1069 (2010)

    Article  Google Scholar 

  25. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001)

    Article  Google Scholar 

  26. Telesford, Q.K., Joyce, K.E., Hayasaka, S., Burdette, J.H., Laurienti, P.J.: The ubiquity of small-world networks. Brain Connectivity 1(5), 367–375 (2011)

    Article  Google Scholar 

  27. Van Wijk, B.C.M., Stam, C.J., Daffertshofer, A.: Comparing brain networks of different size and connectivity density using graph theory. PloS ONE 5(10), e13701 (2010)

    Article  Google Scholar 

  28. Varoquaux, G., Gramfort, A., Poline, J.-B., Thirion, B.: Brain covariance selection: better individual functional connectivity models using population prior. In: Advances in Neural Information Processing Systems, pp. 2334–2342 (2010)

    Google Scholar 

  29. Wang, Z., Alahmadi, A., Zhu, D., Li, T.: Brain functional connectivity analysis using mutual information. In: 2015 IEEE Global Conference on Signal and Information Processing (GlobalSIP), pp. 542–546. IEEE (2015)

    Google Scholar 

  30. Watts, D.J., Strogatz, S.H.: Collective dynamics of śmall-worldńetworks. Nature 393(6684), 440–442 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouyi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puk, K.M. et al. (2018). Uncovering Dynamic Functional Connectivity of Parkinson’s Disease Using Topological Features and Sparse Group Lasso. In: Wang, S., et al. Brain Informatics. BI 2018. Lecture Notes in Computer Science(), vol 11309. Springer, Cham. https://doi.org/10.1007/978-3-030-05587-5_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05587-5_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05586-8

  • Online ISBN: 978-3-030-05587-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics